论文标题
基于自我监督的视觉变压器和弱标签的组织病理学图像分类
Histopathological Image Classification based on Self-Supervised Vision Transformer and Weak Labels
论文作者
论文摘要
整个幻灯片图像(WSI)分析是促进组织样品中癌症诊断的强大方法。自动化此诊断会构成各种问题,最著名的是由巨大的图像分辨率和有限的注释引起的。 WSI通常表现出100KX100K像素的分辨率。在像素水平上的WSIS注释癌区域是过时的劳动力密集型,并且需要高水平的专家知识。多个实例学习(MIL)减轻了对昂贵的像素级注释的需求。在MIL中,学习是在幻灯片级标签上进行的,其中病理学家提供了有关幻灯片是否包括癌组织的信息。在这里,我们提出了自动武器 - 基于幻灯片级注释的新型方法,用于对幻灯片级别的注释进行分类和定位癌性区域,从而消除了对像素的注释训练数据的需求。自vit-mil是在自我监督的环境中预先训练的,可以学习丰富的特征表示,而无需依靠任何标签。最近的视觉变压器(VIT)架构构建了自动武器的特征提取器。为了定位癌性区域,使用了具有全球关注的MIL聚合器。据我们所知,自动竞争是在基于MIL的WSI分析任务中引入自我监督VIT的第一种方法。我们在Common Camelyon16数据集上展示了方法的有效性。在曲线下的准确性和面积(AUC)方面,自动武器毫会超过了现有的基于最新的MIL方法。
Whole Slide Image (WSI) analysis is a powerful method to facilitate the diagnosis of cancer in tissue samples. Automating this diagnosis poses various issues, most notably caused by the immense image resolution and limited annotations. WSIs commonly exhibit resolutions of 100Kx100K pixels. Annotating cancerous areas in WSIs on the pixel level is prohibitively labor-intensive and requires a high level of expert knowledge. Multiple instance learning (MIL) alleviates the need for expensive pixel-level annotations. In MIL, learning is performed on slide-level labels, in which a pathologist provides information about whether a slide includes cancerous tissue. Here, we propose Self-ViT-MIL, a novel approach for classifying and localizing cancerous areas based on slide-level annotations, eliminating the need for pixel-wise annotated training data. Self-ViT- MIL is pre-trained in a self-supervised setting to learn rich feature representation without relying on any labels. The recent Vision Transformer (ViT) architecture builds the feature extractor of Self-ViT-MIL. For localizing cancerous regions, a MIL aggregator with global attention is utilized. To the best of our knowledge, Self-ViT- MIL is the first approach to introduce self-supervised ViTs in MIL-based WSI analysis tasks. We showcase the effectiveness of our approach on the common Camelyon16 dataset. Self-ViT-MIL surpasses existing state-of-the-art MIL-based approaches in terms of accuracy and area under the curve (AUC).