论文标题
小故障重力波天文学的高斯过程
Gaussian Processes for Glitch-robust Gravitational-wave Astronomy
论文作者
论文摘要
干涉重力波观测器在天文学方面开辟了一个新时代。国际网络产生的丰富数据可以详细分析黑洞周围的曲线时空。到目前为止观察到了近一百个信号,并且在未来十年中预计数千个信号,它们的人口特性使人可以洞悉恒星进化和我们宇宙的扩展。然而,探测器受到瞬态噪声伪像称为“故障”的折磨,这些噪声污染了信号和偏见的推断。迄今为止检测到的90个信号中,有18个被故障污染。这项可行性研究探讨了一种使用高斯过程进行瞬态重力波数据分析的新方法,该过程对小故障机制的基本物理学进行了建模,而不是对小故障本身的明确实现。我们证明,如果高斯过程内核函数可以充分建模小故障形态,则可以恢复模拟信号的参数。此外,我们发现这项工作中使用的高斯过程内核非常适合建模长期浮雕,这对于现有的小故障减轻方法最具挑战性。最后,我们展示了我们方法的时间域性质如何实现一类新的相对论时间域测试,并在第一个观察到的二进制黑洞合并中对Inspiral-Merger-Ringdown测试进行了重新分析。我们的调查表明,高斯流程作为传统框架的替代方案的可行性,但尚未确定它们作为替代品。因此,我们以实现高斯流程方法的全部潜力所需的步骤的前景结论。
Interferometric gravitational-wave observatories have opened a new era in astronomy. The rich data produced by an international network enables detailed analysis of the curved space-time around black holes. With nearly one hundred signals observed so far and thousands expected in the next decade, their population properties enable insights into stellar evolution and the expansion of our Universe. However, the detectors are afflicted by transient noise artefacts known as "glitches" which contaminate the signals and bias inferences. Of the 90 signals detected to date, 18 were contaminated by glitches. This feasibility study explores a new approach to transient gravitational-wave data analysis using Gaussian processes, which model the underlying physics of the glitch-generating mechanism rather than the explicit realisation of the glitch itself. We demonstrate that if the Gaussian process kernel function can adequately model the glitch morphology, we can recover the parameters of simulated signals. Moreover, we find that the Gaussian processes kernels used in this work are well-suited to modelling long-duration glitches which are most challenging for existing glitch-mitigation approaches. Finally, we show how the time-domain nature of our approach enables a new class of time-domain tests of General Relativity, performing a re-analysis of the inspiral-merger-ringdown test on the first observed binary black hole merger. Our investigation demonstrates the feasibility of the Gaussian processes as an alternative to the traditional framework but does not yet establish them as a replacement. Therefore, we conclude with an outlook on the steps needed to realise the full potential of the Gaussian process approach.