论文标题
潜在空间中的合作:在各种自动编码器中添加混合组件的好处
Cooperation in the Latent Space: The Benefits of Adding Mixture Components in Variational Autoencoders
论文作者
论文摘要
在本文中,我们展示了混合物成分在共同适应以最大化Elbo时如何配合。我们基于多重和适应性重要性抽样文献的最新进展。然后,我们使用单独的编码网络对混合物组件进行建模,并从经验上表明ELBO是单调的非偏移,这是混合组件数量的函数。这些结果适用于MNIST,FashionMnist和CIFAR-10数据集的各种VAE架构。在这项工作中,我们还证明,增加混合物成分的数量可以提高图像和单细胞数据集上VAE的潜在占代表能力。这种合作行为促使使用混合物VAE被视为获得更灵活的变分近似值的标准方法。最后,在广泛的消融研究中,混合物VAE首次将其与标准化流,分层模型和/或Vampprior进行了比较。我们的多个混合物VAE实现了MNIST和FashionMnist数据集上VAE架构的最先进的对数类样结果。使用我们的代码可重现实验,此处提供:https://github.com/lagergren-lab/mixturevaes。
In this paper, we show how the mixture components cooperate when they jointly adapt to maximize the ELBO. We build upon recent advances in the multiple and adaptive importance sampling literature. We then model the mixture components using separate encoder networks and show empirically that the ELBO is monotonically non-decreasing as a function of the number of mixture components. These results hold for a range of different VAE architectures on the MNIST, FashionMNIST, and CIFAR-10 datasets. In this work, we also demonstrate that increasing the number of mixture components improves the latent-representation capabilities of the VAE on both image and single-cell datasets. This cooperative behavior motivates that using Mixture VAEs should be considered a standard approach for obtaining more flexible variational approximations. Finally, Mixture VAEs are here, for the first time, compared and combined with normalizing flows, hierarchical models and/or the VampPrior in an extensive ablation study. Multiple of our Mixture VAEs achieve state-of-the-art log-likelihood results for VAE architectures on the MNIST and FashionMNIST datasets. The experiments are reproducible using our code, provided here: https://github.com/lagergren-lab/mixturevaes.