论文标题

学习二阶局部异常用于一般面孔检测

Learning Second Order Local Anomaly for General Face Forgery Detection

论文作者

Fei, Jianwei, Dai, Yunshu, Yu, Peipeng, Shen, Tianrun, Xia, Zhihua, Weng, Jian

论文摘要

在这项工作中,我们提出了一种新的方法来提高基于CNN的面部伪造探测器的概括能力。我们的方法考虑了由面部伪造算法中普遍的混合操作引起的锻造面板的特征异常。具体而言,我们提出了一个弱监督的二阶局部异常(SOLA)学习模块,以使用深度特征地图在本地区域开采异常。 Sola首先通过不同的方向和距离分解了局部特征的邻域,然后计算了第一阶和二阶局部异常图,该图为分类器提供了更一般的伪造痕迹。我们还提出了一个局部增强模块(LEM),以改善实际和锻造区域的局部特征之间的区分,以确保计算异常的准确性。此外,还引入了改进的自适应空间富模型(ASRM),以通过可学习的高通滤波器来帮助挖掘微妙的噪声特征。使用像素级注释也没有外部合成数据,我们使用简单的RESNET18骨干的方法在对看不见的伪造物进行评估时,与最先进的作品相比,我们的方法可以实现竞争性能。

In this work, we propose a novel method to improve the generalization ability of CNN-based face forgery detectors. Our method considers the feature anomalies of forged faces caused by the prevalent blending operations in face forgery algorithms. Specifically, we propose a weakly supervised Second Order Local Anomaly (SOLA) learning module to mine anomalies in local regions using deep feature maps. SOLA first decomposes the neighborhood of local features by different directions and distances and then calculates the first and second order local anomaly maps which provide more general forgery traces for the classifier. We also propose a Local Enhancement Module (LEM) to improve the discrimination between local features of real and forged regions, so as to ensure accuracy in calculating anomalies. Besides, an improved Adaptive Spatial Rich Model (ASRM) is introduced to help mine subtle noise features via learnable high pass filters. With neither pixel level annotations nor external synthetic data, our method using a simple ResNet18 backbone achieves competitive performances compared with state-of-the-art works when evaluated on unseen forgeries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源