论文标题
搜索剂和混合环境的零拍摄检索
Zero-Shot Retrieval with Search Agents and Hybrid Environments
论文作者
论文摘要
学习搜索是构建人工代理的任务,这些人工代理学习自主使用搜索框来查找信息。到目前为止,已经表明,当前的语言模型可以与传统的基于术语的检索相结合学习符号查询重新制定政策,但没有表现优于神经夺回者。我们将先前的学习扩展到搜索设置到混合环境,该环境在通过双重编码器进行了首次检索步骤之后,该环境接受离散的查询细化操作。 Beir任务上的实验表明,通过行为克隆训练的搜索剂优于基于组合的双编码器检索器和交叉编码器Reranker的基础搜索系统。此外,我们发现简单的启发式混合检索环境(HRE)可以将基线性能提高几个NDCG点。基于HRE(野兔)的搜索代理与最先进的性能匹配,在零射门和内域评估中通过可解释的动作以及速度的两倍。
Learning to search is the task of building artificial agents that learn to autonomously use a search box to find information. So far, it has been shown that current language models can learn symbolic query reformulation policies, in combination with traditional term-based retrieval, but fall short of outperforming neural retrievers. We extend the previous learning to search setup to a hybrid environment, which accepts discrete query refinement operations, after a first-pass retrieval step via a dual encoder. Experiments on the BEIR task show that search agents, trained via behavioral cloning, outperform the underlying search system based on a combined dual encoder retriever and cross encoder reranker. Furthermore, we find that simple heuristic Hybrid Retrieval Environments (HRE) can improve baseline performance by several nDCG points. The search agent based on HRE (HARE) matches state-of-the-art performance, balanced in both zero-shot and in-domain evaluations, via interpretable actions, and at twice the speed.