论文标题

Pypose:具有基于物理学的优化的机器人学习库

PyPose: A Library for Robot Learning with Physics-based Optimization

论文作者

Wang, Chen, Gao, Dasong, Xu, Kuan, Geng, Junyi, Hu, Yaoyu, Qiu, Yuheng, Li, Bowen, Yang, Fan, Moon, Brady, Pandey, Abhinav, Aryan, Xu, Jiahe, Wu, Tianhao, He, Haonan, Huang, Daning, Ren, Zhongqiang, Zhao, Shibo, Fu, Taimeng, Reddy, Pranay, Lin, Xiao, Wang, Wenshan, Shi, Jingnan, Talak, Rajat, Cao, Kun, Du, Yi, Wang, Han, Yu, Huai, Wang, Shanzhao, Chen, Siyu, Kashyap, Ananth, Bandaru, Rohan, Dantu, Karthik, Wu, Jiajun, Xie, Lihua, Carlone, Luca, Hutter, Marco, Scherer, Sebastian

论文摘要

深度学习在机器人感知方面取得了巨大的成功,但是以数据为中心的性质在推广到不断变化的环境方面受到了影响。相比之下,基于物理的优化可以更好地推广,但是由于缺乏高级语义信息以及对手动参数调整的依赖,因此在复杂的任务中的表现不佳。为了利用这两个互补的世界,我们提出了Pypose:一个面向机器人的,基于Pytorch的库,将深层感知模型与基于物理学的优化相结合。 Pypose的体系结构整洁且组织良好,具有命令性的界面,并且具有高效且用户友好,使其易于集成到现实世界的机器人应用程序中。此外,它支持谎言组和谎言代数的任何订单梯度的并行计算,以及$ 2^{\ text {nd}} $ - 订单优化器,例如信任区域方法。实验表明,与最先进的库相比,Pypose在计算中实现了超过$ 10 \ times的$速度。为了促进未来的研究,我们为机器人学习的几个领域提供了具体示例,包括SLAM,计划,控制和惯性导航。

Deep learning has had remarkable success in robotic perception, but its data-centric nature suffers when it comes to generalizing to ever-changing environments. By contrast, physics-based optimization generalizes better, but it does not perform as well in complicated tasks due to the lack of high-level semantic information and reliance on manual parametric tuning. To take advantage of these two complementary worlds, we present PyPose: a robotics-oriented, PyTorch-based library that combines deep perceptual models with physics-based optimization. PyPose's architecture is tidy and well-organized, it has an imperative style interface and is efficient and user-friendly, making it easy to integrate into real-world robotic applications. Besides, it supports parallel computing of any order gradients of Lie groups and Lie algebras and $2^{\text{nd}}$-order optimizers, such as trust region methods. Experiments show that PyPose achieves more than $10\times$ speedup in computation compared to the state-of-the-art libraries. To boost future research, we provide concrete examples for several fields of robot learning, including SLAM, planning, control, and inertial navigation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源