论文标题
Pypose:具有基于物理学的优化的机器人学习库
PyPose: A Library for Robot Learning with Physics-based Optimization
论文作者
论文摘要
深度学习在机器人感知方面取得了巨大的成功,但是以数据为中心的性质在推广到不断变化的环境方面受到了影响。相比之下,基于物理的优化可以更好地推广,但是由于缺乏高级语义信息以及对手动参数调整的依赖,因此在复杂的任务中的表现不佳。为了利用这两个互补的世界,我们提出了Pypose:一个面向机器人的,基于Pytorch的库,将深层感知模型与基于物理学的优化相结合。 Pypose的体系结构整洁且组织良好,具有命令性的界面,并且具有高效且用户友好,使其易于集成到现实世界的机器人应用程序中。此外,它支持谎言组和谎言代数的任何订单梯度的并行计算,以及$ 2^{\ text {nd}} $ - 订单优化器,例如信任区域方法。实验表明,与最先进的库相比,Pypose在计算中实现了超过$ 10 \ times的$速度。为了促进未来的研究,我们为机器人学习的几个领域提供了具体示例,包括SLAM,计划,控制和惯性导航。
Deep learning has had remarkable success in robotic perception, but its data-centric nature suffers when it comes to generalizing to ever-changing environments. By contrast, physics-based optimization generalizes better, but it does not perform as well in complicated tasks due to the lack of high-level semantic information and reliance on manual parametric tuning. To take advantage of these two complementary worlds, we present PyPose: a robotics-oriented, PyTorch-based library that combines deep perceptual models with physics-based optimization. PyPose's architecture is tidy and well-organized, it has an imperative style interface and is efficient and user-friendly, making it easy to integrate into real-world robotic applications. Besides, it supports parallel computing of any order gradients of Lie groups and Lie algebras and $2^{\text{nd}}$-order optimizers, such as trust region methods. Experiments show that PyPose achieves more than $10\times$ speedup in computation compared to the state-of-the-art libraries. To boost future research, we provide concrete examples for several fields of robot learning, including SLAM, planning, control, and inertial navigation.