论文标题
拓扑问题和分数纠缠量子几何形状
Topological Matter and Fractional Entangled Quantum Geometry through Light
论文作者
论文摘要
在这里,我们揭示了我们最近在通过经典电动力学连接的量子物理学和拓扑晶体的几何方法和拓扑晶体的几何方法上的进展。量子自旋1/2粒子的Bloch球在存在径向磁场的情况下获得整数拓扑电荷。我们表明,全局拓扑特性是从表面的两极进行编码的,从而使平滑场,度量和量子距离之间的对应关系与拓扑数的平方之间。该信息是在细的零弦线上从每个杆上传输到赤道平面的。我们在时空和时间上开发了“量子拓扑”的理论,并在从牛顿方法的运输中进行了应用,从光的光电效应到从光的圆形二分法到晶体的拓扑结构结构。与拓扑晶格模型相关的边缘模式在将球形或椭圆形变形到圆柱体上时可以分析解析。量子厅效应的拓扑特性,量子异常霍尔效应和量子自旋霍尔对蜂窝晶格的效果可以通过轻度耦合在布里渊区域进行测量。形式主义使我们能够包括动量空间的相互作用效果。相互作用也可能导致弯曲空间内的分数纠缠几何形状。我们在量子力学中的纠缠波函数,几何形状的相干叠加,一半拓扑数和majoraga fermions的方法之间发展了一个关系。我们在拓扑问题上表现出认识。我们通过梅隆(Merons)介绍了轴突电动力学,拓扑绝缘子和两键模型之间的联系。
Here, we reveal our recent progress on a geometrical approach of quantum physics and topological crystals linking with Dirac magnetic monopoles and gauge fields through classical electrodynamics. The Bloch sphere of a quantum spin-1/2 particle acquires an integer topological charge in the presence of a radial magnetic field. We show that global topological properties are encoded from the poles of the surface allowing a correspondence between smooth fields, metric and quantum distance with the square of the topological number. The information is transported from each pole to the equatorial plane on a thin Dirac string. We develop the theory, "quantum topometry" in space and time, and present applications on transport from a Newtonian approach, on a quantized photo-electric effect from circular dichroism of light towards topological band structures of crystals. Edge modes related to topological lattice models are resolved analytically when deforming the sphere or ellipse onto a cylinder. Topological properties of the quantum Hall effect, quantum anomalous Hall effect and quantum spin Hall effect on the honeycomb lattice can be measured locally in the Brillouin zone from light-matter coupling. The formalism allows us to include interaction effects from the momentum space. Interactions may also result in fractional entangled geometry within the curved space. We develop a relation between entangled wavefunction in quantum mechanics, coherent superposition of geometries, a way to one-half topological numbers and Majorana fermions. We show realizations in topological matter. We present a link between axion electrodynamics, topological insulators on a surface of a cube and the two-spheres' model via merons.