论文标题

悬浮的纳米颗粒的两个机械模式的同时冷却

Simultaneous ground-state cooling of two mechanical modes of a levitated nanoparticle

论文作者

Piotrowski, Johannes, Windey, Dominik, Vijayan, Jayadev, Gonzalez-Ballestero, Carlos, Sommer, Andrés de los Ríos, Meyer, Nadine, Quidant, Romain, Romero-Isart, Oriol, Reimann, René, Novotny, Lukas

论文摘要

巨大的机械系统的量子基态是用于研究宏观量子状态并构建高富达传感器的垫脚石。随着单个运动模式的地面冷却的最新成就,悬浮的纳米颗粒已进入量子域。为了克服有害的交叉耦合和反矫正效应,需要将量子控制扩展到更大的系统尺寸,但是截至脱钩的暗模式的效果迄今已阻碍了多种机械模式的基于空腔的基态冷却。在这里,我们证明了光学悬浮的纳米颗粒的二维(2D)基态冷却。将相干散射到光腔模式中,我们分别将两个独立的质量质量模式的职业人数降低到0.83和0.81。通过控制纳米颗粒机械模式的频率分离和空腔耦合强度,我们显示了从1d到2D地面冷却的过渡,同时避免了暗模式的效果。我们的结果为产生量子限制的高轨道角动量状态的基础是旋转传感的应用。展示的2D控制,结合了沿第三个运动轴已经显示的地面冷却功能,为大型物体的完整3D地面冷却打开了门。

The quantum ground state of a massive mechanical system is a steppingstone for investigating macroscopic quantum states and building high fidelity sensors. With the recent achievement of ground-state cooling of a single motional mode, levitated nanoparticles have entered the quantum domain. To overcome detrimental cross-coupling and decoherence effects, quantum control needs to be expanded to more system dimensions, but the effect of a decoupled dark mode has thus far hindered cavity-based ground state cooling of multiple mechanical modes. Here, we demonstrate two-dimensional (2D) ground-state cooling of an optically levitated nanoparticle. Utilising coherent scattering into an optical cavity mode, we reduce the occupation numbers of two separate centre-of-mass modes to 0.83 and 0.81, respectively. By controlling the frequency separation and the cavity coupling strengths of the nanoparticle's mechanical modes, we show the transition from 1D to 2D ground-state cooling while avoiding the effect of dark modes. Our results lay the foundations for generating quantum-limited high orbital angular momentum states with applications in rotation sensing. The demonstrated 2D control, combined with already shown capabilities of ground-state cooling along the third motional axis, opens the door for full 3D ground-state cooling of a massive object.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源