论文标题

具有预测的公共商品的在线公平分配

Proportionally Fair Online Allocation of Public Goods with Predictions

论文作者

Banerjee, Siddhartha, Gkatzelis, Vasilis, Hossain, Safwan, Jin, Billy, Micha, Evi, Shah, Nisarg

论文摘要

我们设计了在线算法,用于将公共物品公平分配给一组$ n $ n $的代理商,并专注于使用预测来提高其绩效。在基本模型中,公共物品在每个回合中都到来,算法将学习每个代理商的价值,并且必须不可撤销地确定商品的投资量,而不会超过所有回合的总预算$ b $。该算法可以利用(可能不准确的)预测每个代理商的总价值,以使所有商品到达。我们使用比例公平目标来衡量算法的性能,该目标非正式地要求每组代理按其大小和偏好的凝聚力成比例地奖励。 在二进制代理偏好和单位预算的特殊情况下,我们表明$ o(\ log n)$比例公平无需使用任何预测,即使有完全准确的预测,这也是最佳的。但是,对于一般的偏好和预算,没有算法可以更好地取得优于$θ(t/b)$成比例公平,而没有预测。我们表明,具有(合理准确)预测的算法可以做得更好,从而实现$θ(\ log(t/b))$比例公平。我们还将此结果扩展到一个通用模型,其中一批$ l $公共商品在每回合中到达并实现$ o(\ log(\ min(n,l)\ cdot t/b))$比例公平。我们的确切界限是作为预测中误差的函数进行参数化的,并且性能随着误差的增加而优雅地降低。

We design online algorithms for the fair allocation of public goods to a set of $N$ agents over a sequence of $T$ rounds and focus on improving their performance using predictions. In the basic model, a public good arrives in each round, the algorithm learns every agent's value for the good, and must irrevocably decide the amount of investment in the good without exceeding a total budget of $B$ across all rounds. The algorithm can utilize (potentially inaccurate) predictions of each agent's total value for all the goods to arrive. We measure the performance of the algorithm using a proportional fairness objective, which informally demands that every group of agents be rewarded in proportion to its size and the cohesiveness of its preferences. In the special case of binary agent preferences and a unit budget, we show that $O(\log N)$ proportional fairness can be achieved without using any predictions, and that this is optimal even if perfectly accurate predictions were available. However, for general preferences and budget no algorithm can achieve better than $Θ(T/B)$ proportional fairness without predictions. We show that algorithms with (reasonably accurate) predictions can do much better, achieving $Θ(\log (T/B))$ proportional fairness. We also extend this result to a general model in which a batch of $L$ public goods arrive in each round and achieve $O(\log (\min(N,L) \cdot T/B))$ proportional fairness. Our exact bounds are parametrized as a function of the error in the predictions and the performance degrades gracefully with increasing errors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源