论文标题

少数群体重要:促进多样性的协作度量学习算法

The Minority Matters: A Diversity-Promoting Collaborative Metric Learning Algorithm

论文作者

Bao, Shilong, Xu, Qianqian, Yang, Zhiyong, He, Yuan, Cao, Xiaochun, Huang, Qingming

论文摘要

协作度量学习(CML)最近成为推荐系统(RS)的一种流行方法,缩小了公制学习和协作过滤之间的差距。按照RS的约定,现有方法在其模型设计中利用唯一的用户表示。本文重点介绍了一个充满挑战的情况,在该场景中,用户具有多种类别的兴趣。在此设置下,我们认为唯一的用户表示可能会导致偏好偏差,尤其是当项目类别分布不平衡时。为了解决这个问题,我们提出了一种称为\ textit {促进多样性的协作度量学习}(DPCML)的新方法,希望考虑使用用户通常忽略的少数群体利益。 DPCML背后的关键思想是为系统中的每个用户包括一组多组表示。基于此嵌入范式,通过在用户嵌入设置之间取下最小的项目用户距离,从不同的嵌入中汇总了对项目的用户偏好。此外,我们观察到,同一用户的嵌入的多样性在模型中也起着至关重要的作用。为此,我们提出了一个\ textIt {多样性控制正则化}术语,以更好地适应多向量表示策略。从理论上讲,我们表明DPCML可以通过应对最低值带来的烦人操作的挑战来很好地概括到看不见的测试数据。一系列基准数据集的实验表达了DPCML的功效。

Collaborative Metric Learning (CML) has recently emerged as a popular method in recommendation systems (RS), closing the gap between metric learning and Collaborative Filtering. Following the convention of RS, existing methods exploit unique user representation in their model design. This paper focuses on a challenging scenario where a user has multiple categories of interests. Under this setting, we argue that the unique user representation might induce preference bias, especially when the item category distribution is imbalanced. To address this issue, we propose a novel method called \textit{Diversity-Promoting Collaborative Metric Learning} (DPCML), with the hope of considering the commonly ignored minority interest of the user. The key idea behind DPCML is to include a multiple set of representations for each user in the system. Based on this embedding paradigm, user preference toward an item is aggregated from different embeddings by taking the minimum item-user distance among the user embedding set. Furthermore, we observe that the diversity of the embeddings for the same user also plays an essential role in the model. To this end, we propose a \textit{diversity control regularization} term to accommodate the multi-vector representation strategy better. Theoretically, we show that DPCML could generalize well to unseen test data by tackling the challenge of the annoying operation that comes from the minimum value. Experiments over a range of benchmark datasets speak to the efficacy of DPCML.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源