论文标题

高级界面相变材料:结构限制和界面扩展超级晶格

Advanced interfacial phase change material: structurally confined and interfacially extended superlattice

论文作者

Lim, Hyeon wook, Kim, Young sam, Jo, Kyu-jin, Seok-Choi, Lee, Chang Woo, Kim, Dasol, Kwon, Ki hyeon, Kwon, Hoe don, Hwang, Soo bin, Choi, Byung-Joon, Yang, Cheol-Woong, Sim, Eun Ji, Cho, Mann-Ho

论文摘要

界面相变内存记忆(IPCM)因减少不必要的熵损失而在相变时产生的浪费热量引起的不必要的功耗。在这项研究中,通过将Ti掺入SB2TE3来合成高级IPCM(GETE/TI-SB2TE3超级晶格)。结构分析和密度功能理论(DFT)计算证实,粘结失真和结构良好的层有助于改善IPCM中的相变特性。 Ti-SB2TE3充当有效的热屏障,可以将产生的热量定位在活性区域内,从而导致开关能量减少。由于与SB-TE附近的键相邻的GE-TE键比SB-TE附近的键更伸长,因此GE原子在相变过程中由于增强的PEIERLS扭曲(RLONG/RSHORT)而更容易与TE键合键。高级IPCM(骑自行车耐力,写速/能量)的属性超过了以前的记录。此外,使用高级IPCM获得了结合良好的多级状态,显示出作为神经形态记忆的潜力。我们的工作为通过控制限制层设计基于超晶格的PCM铺平了道路。

Interfacial Phase Change Memory (iPCM) retrench unnecessary power consumption due to wasted heat generated during phase change by reducing unnecessary entropic loss. In this study, an advanced iPCM (GeTe/Ti-Sb2Te3 Superlattice) is synthesized by doping Ti into Sb2Te3. Structural analysis and density functional theory (DFT) calculations confirm that bonding distortion and structurally well-confined layers contribute to improve phase change properties in iPCM. Ti-Sb2Te3 acts as an effective thermal barrier to localize the generated heat inside active region, which leads to reduction of switching energy. Since Ge-Te bonds adjacent to short and strong Ti-Te bonds are more elongated than the bonds near Sb-Te, it is easier for Ge atoms to break the bond with Te due to strengthened Peierls distortions (Rlong/Rshort) during phase change process. Properties of advanced iPCM (cycling endurance, write speed/energy) exceed previous records. Moreover, well-confined multi-level states are obtained with advanced iPCM, showing potential as a neuromorphic memory. Our work paves the way for designing superlattice based PCM by controlling confinement layers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源