论文标题
解决等级的难题2 $ \ MATHCAL {N} = 2 $分类由Argyres和Martone分类
Solving a puzzle in the rank 2 $\mathcal{N}=2$ classification by Argyres and Martone
论文作者
论文摘要
Argyres和Martone在等级2中对规模不变的特殊几何形状进行了精美而深的分类。它们得到了一个难题:具有库仑尺寸的比例不变的几何形状$ \ {2,2 \} $似乎取决于四个免费的复杂参数,而在我们的基础上,我们只能进行两次大小的物理参数。我们表明,$ \ {2,2 \} $特殊几何形状的等级确实是由维度2的复杂空间进行了参数的,实际上是由非敏感的DEL PEZZO表面的5度,这与Gaiotto的物理期望完全匹配。这解决了难题。
Argyres and Martone have produced a beautiful and deep classification of the scale invariant Special Geometries in rank 2. They get a puzzle: the scale-invariant geometries with Coulomb dimensions $\{2,2\}$ appear to depend on four free complex parameters, while on physical grounds we expect only two marginal deformations. We show that the isoclasses of $\{2,2\}$ Special Geometries are indeed parametrized by a complex space of dimension 2, in facts by a non-singular del Pezzo surface of degree 5, a result which exactly matches the physical expectation by Gaiotto. This solves the puzzle.