论文标题

RL-MD:DNA图案发现的一种新颖的增强学习方法

RL-MD: A Novel Reinforcement Learning Approach for DNA Motif Discovery

论文作者

Wang, Wen, Wang, Jianzong, Si, Shijing, Huang, Zhangcheng, Xiao, Jing

论文摘要

从功能连接的未标记DNA序列集合中提取序列模式被称为DNA基序发现,它是计算生物学的关键任务。最近引入了几种基于深度学习的技术来解决此问题。但是,由于需要标记的数据,这些算法无法在现实情况下使用。在这里,我们介绍了RL-MD,这是一种基于新颖的增强学习方法,用于DNA图案发现任务。 RL-MD将未标记的数据作为输入,采用基于相对信息的方法来评估每个提出的主题,并利用这些连续的评估结果作为奖励。该实验表明,RL-MD可以识别现实世界中的高质量基序。

The extraction of sequence patterns from a collection of functionally linked unlabeled DNA sequences is known as DNA motif discovery, and it is a key task in computational biology. Several deep learning-based techniques have recently been introduced to address this issue. However, these algorithms can not be used in real-world situations because of the need for labeled data. Here, we presented RL-MD, a novel reinforcement learning based approach for DNA motif discovery task. RL-MD takes unlabelled data as input, employs a relative information-based method to evaluate each proposed motif, and utilizes these continuous evaluation results as the reward. The experiments show that RL-MD can identify high-quality motifs in real-world data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源