论文标题

身体对抗攻击符合计算机视觉:十年的调查

Physical Adversarial Attack meets Computer Vision: A Decade Survey

论文作者

Wei, Hui, Tang, Hao, Jia, Xuemei, Wang, Zhixiang, Yu, Hanxun, Li, Zhubo, Satoh, Shin'ichi, Van Gool, Luc, Wang, Zheng

论文摘要

尽管深度神经网络(DNN)在计算机视觉中取得了令人印象深刻的成就,但它们对对抗攻击的脆弱性仍然是一个关键问题。广泛的研究表明,将复杂的扰动纳入输入图像可能会导致DNNS性能中的灾难性降解。这种令人困惑的现象不仅存在于数字空间,而且存在于物理世界中。因此,必须评估基于DNNS的系统的安全性,以确保其在实际情况下,尤其是在对安全敏感的应用程序中的安全部署。为了促进对该主题的深刻理解,本文介绍了对身体对抗性攻击的全面概述。首先,我们提炼了发射物理对抗攻击的四个一般步骤。在这个基础的基础上,我们揭示了在物理世界中携带对抗性扰动的文物的普遍作用。这些文物会影响每个步骤。为了表示它们,我们介绍了一个新术语:对抗媒介。然后,我们迈出的第一步是系统地评估物理对抗攻击的性能,以对抗性培养基作为第一次尝试。我们提出的评估指标,HIPAA,包括六个观点:有效性,隐身,鲁棒性,可实用性,美学和经济学。我们还提供了跨任务类别的比较结果,以及对未来研究方向的有见地的观察和建议。

Despite the impressive achievements of Deep Neural Networks (DNNs) in computer vision, their vulnerability to adversarial attacks remains a critical concern. Extensive research has demonstrated that incorporating sophisticated perturbations into input images can lead to a catastrophic degradation in DNNs' performance. This perplexing phenomenon not only exists in the digital space but also in the physical world. Consequently, it becomes imperative to evaluate the security of DNNs-based systems to ensure their safe deployment in real-world scenarios, particularly in security-sensitive applications. To facilitate a profound understanding of this topic, this paper presents a comprehensive overview of physical adversarial attacks. Firstly, we distill four general steps for launching physical adversarial attacks. Building upon this foundation, we uncover the pervasive role of artifacts carrying adversarial perturbations in the physical world. These artifacts influence each step. To denote them, we introduce a new term: adversarial medium. Then, we take the first step to systematically evaluate the performance of physical adversarial attacks, taking the adversarial medium as a first attempt. Our proposed evaluation metric, hiPAA, comprises six perspectives: Effectiveness, Stealthiness, Robustness, Practicability, Aesthetics, and Economics. We also provide comparative results across task categories, together with insightful observations and suggestions for future research directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源