论文标题
(3-氨基丙基)三甲氧基硅烷表面钝化通过降低表面重组速度来改善钙钛矿太阳能细胞性能
(3-Aminopropyl)trimethoxysilane Surface Passivation Improves Perovskite Solar Cell Performance by Reducing Surface Recombination Velocity
论文作者
论文摘要
我们通过使用(3-氨基氨基丙基)三甲氧基硅烷(APTMS)作为表面厌氧剂来证明表面重组速度(SRV)降低和增强的功率转化效率(PCE)。我们显示APTMS可以在钙钛矿表面钝化缺陷,同时还将钙钛矿与C60界面处的有害相互作用解耦。我们测量了〜125 + 14 cm/s的SRV,与对照组相比,在钝化器件中,准FERMI水平分裂中的SRV伴随量增加了〜100 meV。我们使用时间分辨的光致发光和激发相关的光致发光光谱,以表明APTMS钝化有效抑制了非辐射重组。我们表明,APTMS提高了填充因子和开路电压(VOC),VOC从1.03 V对控制设备的1.03 V增加到APTMS papsivatived设备的1.09 V,这导致PCE从15.90%增加到18.03%。我们将增强的性能归因于降低的缺陷密度或抑制的非辐射重组和低srv在钙钛矿/运输层接口处。
We demonstrate reduced surface recombination velocity (SRV) and enhanced power-conversion efficiency (PCE) in mixed-cation mixed-halide perovskite solar cells by using (3-aminopropyl)trimethoxysilane (APTMS) as a surface passivator. We show the APTMS serves to passivate defects at the perovskite surface, while also decoupling the perovskite from detrimental interactions at the C60 interface. We measure a SRV of ~125 + 14 cm/s, and a concomitant increase of ~100 meV in quasi-Fermi level splitting in passivated devices compared to the controls. We use time-resolved photoluminescence and excitation-correlation photoluminescence spectroscopy to show that APTMS passivation effectively suppresses non-radiative recombination. We show that APTMS improves both the fill factor and open-circuit voltage (VOC), increasing VOC from 1.03 V for control devices to 1.09 V for APTMS-passivated devices, which leads to PCE increasing from 15.90% to 18.03%. We attribute enhanced performance to reduced defect density or suppressed nonradiative recombination and low SRV at the perovskite/transporting layers interface.