论文标题

基于深度无监督模型的心形科学信号异常检测

Cardiotocography Signal Abnormality Detection based on Deep Unsupervised Models

论文作者

Bertieaux, Julien, Shateri, Mohammadhadi, Labeau, Fabrice, Dutoit, Thierry

论文摘要

心脏图(CTG)是监测胎儿健康的关键要素。产科医生使用它来观察胎儿心率(FHR)和子宫收缩(UC)。目的是确定胎儿对收缩的反应以及它是否接受足够的氧气。如果发生问题,医生可以通过干预做出反应。不幸的是,CTG的解释是高度主观的,并且在从业人员中观察者的一致性率低。这可能会导致不必要的医疗干预,这代表了母亲和胎儿的风险。最近,文献中提出了计算机辅助诊断技术,尤其是基于人工智能模型(主要是监督)的技术。但是,这些模型中的许多模型由于过度拟合而缺乏看不见/测试数据样本的概括。此外,将无监督的模型应用于很小的CTG样品中,在正常和异常类别是高度可分离的情况下。在这项工作中,提出了以半监督方式训练的深度无监督的学习方法,提议在CTG信号中进行异常检测。修改以捕获数据样本的基础分布的甘诺利框架被用作我们的主要模型,并应用于CTU-UHB数据集。与最近的研究不同,我们的工作中使用了所有没有任何特定偏好的CTG数据样本。实验结果表明,我们修改的甘诺利模型的表现优于最先进的。这项研究承认,在CTG异常检测中,深度无监督模型的优越性比受监督的模型的优越性。

Cardiotocography (CTG) is a key element when it comes to monitoring fetal well-being. Obstetricians use it to observe the fetal heart rate (FHR) and the uterine contraction (UC). The goal is to determine how the fetus reacts to the contraction and whether it is receiving adequate oxygen. If a problem occurs, the physician can then respond with an intervention. Unfortunately, the interpretation of CTGs is highly subjective and there is a low inter- and intra-observer agreement rate among practitioners. This can lead to unnecessary medical intervention that represents a risk for both the mother and the fetus. Recently, computer-assisted diagnosis techniques, especially based on artificial intelligence models (mostly supervised), have been proposed in the literature. But, many of these models lack generalization to unseen/test data samples due to overfitting. Moreover, the unsupervised models were applied to a very small portion of the CTG samples where the normal and abnormal classes are highly separable. In this work, deep unsupervised learning approaches, trained in a semi-supervised manner, are proposed for anomaly detection in CTG signals. The GANomaly framework, modified to capture the underlying distribution of data samples, is used as our main model and is applied to the CTU-UHB dataset. Unlike the recent studies, all the CTG data samples, without any specific preferences, are used in our work. The experimental results show that our modified GANomaly model outperforms state-of-the-arts. This study admit the superiority of the deep unsupervised models over the supervised ones in CTG abnormality detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源