论文标题
迭代条带噪声的深度展开
Deep Unfolding for Iterative Stripe Noise Removal
论文作者
论文摘要
红外成像系统的非均匀光电响应导致固定图案条纹噪声叠加在红外图像上,从而严重降低了图像质量。由于降级红外图像的应用有限,因此有效保留原始细节至关重要。现有的图像破坏方法难以同时消除所有条纹噪声伪影,保留图像细节和结构,并平衡实时性能。在本文中,我们提出了一种用于破坏退化图像的新型算法,该算法利用相邻的列信号相关性来消除独立的柱条纹噪声。这是通过一种迭代深度展开算法来实现的,其中一个网络迭代的估计噪声被用作下一个迭代的输入。这种进展大大缩小了可能的功能近似的搜索空间,从而可以在较大的数据集上进行有效的培训。提出的方法允许对条纹噪声进行更精确的估计,以更准确地保留场景细节。广泛的实验结果表明,在定量和定性评估上,提出的模型在人工损坏的图像上的现有破坏方法优于现有的破坏方法。
The non-uniform photoelectric response of infrared imaging systems results in fixed-pattern stripe noise being superimposed on infrared images, which severely reduces image quality. As the applications of degraded infrared images are limited, it is crucial to effectively preserve original details. Existing image destriping methods struggle to concurrently remove all stripe noise artifacts, preserve image details and structures, and balance real-time performance. In this paper we propose a novel algorithm for destriping degraded images, which takes advantage of neighbouring column signal correlation to remove independent column stripe noise. This is achieved through an iterative deep unfolding algorithm where the estimated noise of one network iteration is used as input to the next iteration. This progression substantially reduces the search space of possible function approximations, allowing for efficient training on larger datasets. The proposed method allows for a more precise estimation of stripe noise to preserve scene details more accurately. Extensive experimental results demonstrate that the proposed model outperforms existing destriping methods on artificially corrupted images on both quantitative and qualitative assessments.