论文标题
一个大整数是两个质量避免数字的总和
A large integer is a sum of two prime avoiding numbers
论文作者
论文摘要
令$ f(n)= \ min_ {p} | n-p | $,其中$ p $是素数。我们表明,存在一个正常数$δ$,因此对于任何大整数$ n $,都有两个正整数$ n_1 $和$ n_2 $,这样$ n = n_1 + n_1 + n_2 $ and $ f(n_i)\ gg \ ln n(\ ln n \ ln n n n n n n n)^δ$,$,$,$ i = 1,2 $。
Let $f(n)=\min_{p} |n-p|$, where $p$ is a prime. We show that there is a positive constant $δ$ such that for any large integer $N$ there exist two positive integers $n_1$ and $n_2$ such that $N=n_1 + n_2$ and $f(n_i)\gg \ln N (\ln\ln N)^δ$, $i=1, 2$.