论文标题

基于事件的行动识别的尖峰神经网络:了解其优势的新任务

Spiking Neural Networks for event-based action recognition: A new task to understand their advantage

论文作者

Vicente-Sola, Alex, Manna, Davide L., Kirkland, Paul, Di Caterina, Gaetano, Bihl, Trevor

论文摘要

尖峰神经网络(SNN)的特征是它们独特的时间动力学,但是此类计算的属性和优势仍然不太了解。为了提供答案,在这项工作中,我们演示了尖峰神经元如何在不需要复发突触的情况下启用馈电神经网络中的时间特征提取,以及如何使用较小参数的LSTM获得可比较的结果。这表明了如何成功利用其生物启发的计算原理,超出能源效率的提高并证明了它们在常规人工神经网络方面的差异。这些结果是通过新任务DVS-GESTURE-CHAIN(DVS-GC)获得的,该任务首次允许在基于实际事件的动作识别数据集中评估时间依赖性的感知。我们的研究证明了在事件在框架中积累时,网络如何通过网络解决了广泛使用的DVS手势基准,这与新的DVS-GC不同,这需要了解事件发生的顺序。此外,这种设置使我们能够揭示泄漏率在峰值神经元中的作用,以进行时间处理任务,并证明了“硬重置”机制的好处。此外,我们还展示了时间依赖的权重和归一化如何通过时间关注来理解顺序。

Spiking Neural Networks (SNN) are characterised by their unique temporal dynamics, but the properties and advantages of such computations are still not well understood. In order to provide answers, in this work we demonstrate how Spiking neurons can enable temporal feature extraction in feed-forward neural networks without the need for recurrent synapses, and how recurrent SNNs can achieve comparable results to LSTM with a smaller number of parameters. This shows how their bio-inspired computing principles can be successfully exploited beyond energy efficiency gains and evidences their differences with respect to conventional artificial neural networks. These results are obtained through a new task, DVS-Gesture-Chain (DVS-GC), which allows, for the first time, to evaluate the perception of temporal dependencies in a real event-based action recognition dataset. Our study proves how the widely used DVS Gesture benchmark can be solved by networks without temporal feature extraction when its events are accumulated in frames, unlike the new DVS-GC which demands an understanding of the order in which events happen. Furthermore, this setup allowed us to reveal the role of the leakage rate in spiking neurons for temporal processing tasks and demonstrated the benefits of "hard reset" mechanisms. Additionally, we also show how time-dependent weights and normalization can lead to understanding order by means of temporal attention.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源