论文标题
正弦汉密尔顿操作员的功率,用于估算量子计算机上的本征能量
Power of Sine Hamiltonian Operator for Estimating the Eigenstate Energies on Quantum Computers
论文作者
论文摘要
量子计算机已被证明在解决量子化学中的困难问题方面具有巨大的潜力。在本文中,我们提出了一种新的古典量子混合方法,称为正弦汉密尔顿操作员(PSHO)的力量,以评估给定的汉密尔顿(H)的特征值。在PSHO中,对于任何参考状态,可以确定正弦汉密尔顿力量状态的归一化能量。随着功率的增加,初始参考状态可以在参考状态的扩展系数中与最大的绝对特征值收敛到特征态,并将正弦汉密尔顿力量状态的归一化能量收敛到EI。可以通过采取不同的t值来确定哈密顿量的地面和激发状态能量。 PSHO方法的性能通过H4和LIH分子的数值计算来证明。与当前流行的量子量子力学方法相比,PSHO不需要设计ANSATZ电路并避免复杂的非线性优化问题。 PSHO在近期量子设备中具有巨大的应用潜力。
Quantum computers have been shown to have tremendous potential in solving difficult problems in quantum chemistry. In this paper, we propose a new classical quantum hybrid method, named as power of sine Hamiltonian operator (PSHO), to evaluate the eigenvalues of a given Hamiltonian (H). In PSHO, for any reference state, the normalized energy of the sine Hamiltonian power state can be determined. With the increase of the power, the initial reference state can converge to the eigenstate with the largest absolute eigenvalue in the coefficients of the expansion of reference state, and the normalized energy of the sine Hamiltonian power state converges to Ei. The ground and excited state energies of a Hamiltonian can be determined by taking different t values. The performance of the PSHO method is demonstrated by numerical calculations of the H4 and LiH molecules. Compared with the current popular variational quantum eigensolver method, PSHO does not need to design the ansatz circuits and avoids the complex nonlinear optimization problems. PSHO has great application potential in near term quantum devices.