论文标题
从井原木间隔间隔的非对比度表示学习
Non-contrastive representation learning for intervals from well logs
论文作者
论文摘要
石油和天然气行业中的表示学习问题旨在构建一个模型,该模型基于记录数据的表示,以进行井的间隔。先前的尝试主要是监督,并专注于相似性任务,该任务估计间隔之间的亲密关系。我们希望在不使用监督(标签)数据的情况下构建信息表示。可能的方法之一是自我监督的学习(SSL)。与监督范式相反,该数据几乎不需要标签。如今,大多数SSL方法要么是对比度或非对比度。对比方法使相似(正)对象的表示形式更加紧密,并疏远了不同的(负)。由于可能对正面和负对的错误标记,这些方法可以提供较低的性能。非对抗性方法不依赖于这种标签,并且在计算机视觉中广泛存在。他们仅使用成对的类似对象,这些对象在记录数据中易于识别。 我们是第一个引入非对抗性SSL进行良好数据的人。特别是,我们利用Bootstrap您自己的潜伏(BYOL)和Barlow Twins方法,它们避免使用负面对,并仅专注于匹配正对。这些方法的关键部分是增强策略。我们的增强策略和BYOL和BARLOW双胞胎的改编使我们能够在聚类方面实现卓越的质量,并且主要是不同分类任务的最佳性能。我们的结果证明了所提出的非对抗性自我观察方法的有用性,尤其是在表示学习和间隔相似性。
The representation learning problem in the oil & gas industry aims to construct a model that provides a representation based on logging data for a well interval. Previous attempts are mainly supervised and focus on similarity task, which estimates closeness between intervals. We desire to build informative representations without using supervised (labelled) data. One of the possible approaches is self-supervised learning (SSL). In contrast to the supervised paradigm, this one requires little or no labels for the data. Nowadays, most SSL approaches are either contrastive or non-contrastive. Contrastive methods make representations of similar (positive) objects closer and distancing different (negative) ones. Due to possible wrong marking of positive and negative pairs, these methods can provide an inferior performance. Non-contrastive methods don't rely on such labelling and are widespread in computer vision. They learn using only pairs of similar objects that are easier to identify in logging data. We are the first to introduce non-contrastive SSL for well-logging data. In particular, we exploit Bootstrap Your Own Latent (BYOL) and Barlow Twins methods that avoid using negative pairs and focus only on matching positive pairs. The crucial part of these methods is an augmentation strategy. Our augmentation strategies and adaption of BYOL and Barlow Twins together allow us to achieve superior quality on clusterization and mostly the best performance on different classification tasks. Our results prove the usefulness of the proposed non-contrastive self-supervised approaches for representation learning and interval similarity in particular.