论文标题

COVID-19之后通货膨胀的情感分析

Sentiment Analysis on Inflation after Covid-19

论文作者

Li, Xinyu, Tang, Zihan

论文摘要

从2017 - 2022年开始,我们为全球推文实施了传统的机器学习和深度学习方法,以建立对通货膨胀的公众情感指数的高频度量,并分析其与其他在线数据源的相关性,例如Google趋势和面向市场的通货膨胀指数。我们使用手动标记的Trigram来测试几种机器学习模型(逻辑回归,随机森林等)的预测性能,并选择BERT模型进行最终演示。后来,我们将每日推文从BERT模型中获得的情感分数汇总以获得预测的通货膨胀情绪指数,并进一步分析了这些通货膨胀指数的区域和前/后的共证模式。最后,我们将其他与经验通货膨胀相关的数据作为参考文献,并证明基于Twitter的通货膨胀情绪分析方法具有预测通货膨胀的出色能力。结果表明,与深度学习方法相结合的Twitter可以是一种新颖而及时的方法,可以利用现有的通货膨胀预期数据源,并提供消费者对通货膨胀的看法的每日指标。

We implement traditional machine learning and deep learning methods for global tweets from 2017-2022 to build a high-frequency measure of the public's sentiment index on inflation and analyze its correlation with other online data sources such as google trend and market-oriented inflation index. We use manually labeled trigrams to test the prediction performance of several machine learning models(logistic regression,random forest etc.) and choose Bert model for final demonstration. Later, we sum daily tweets' sentiment scores gained from Bert model to obtain the predicted inflation sentiment index, and we further analyze the regional and pre/post covid patterns of these inflation indexes. Lastly, we take other empirical inflation-related data as references and prove that twitter-based inflation sentiment analysis method has an outstanding capability to predict inflation. The results suggest that Twitter combined with deep learning methods can be a novel and timely method to utilize existing abundant data sources on inflation expectations and provide daily indicators of consumers' perception on inflation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源