论文标题
化学反应网络中马鞍节分叉的结构条件
Structural conditions for saddle-node bifurcations in chemical reaction networks
论文作者
论文摘要
通过研究生物化学系统中的多立法性,我们解决了具有一般动力学的化学反应网络的鞍形节点分叉。在积极的平衡下,我们确定了保证分叉行为的结构网络条件,并开发了一种识别适当分叉参数的方法。作为一个相关的例子,我们明确为Michaelis-Menten和Hill动力学提供了这种分叉参数。应用的示例包括可逆的反馈周期,大肠杆菌的中央碳代谢和自催化网络。
Motivated by investigating multistationarity in biochemical systems, we address saddle-node bifurcations for chemical reaction networks endowed with general kinetics. At positive equilibria, we identify structural network conditions that guarantee the bifurcation behavior, and we develop a method to identify the proper bifurcation parameters. As a relevant example, we explicitly provide such bifurcation parameters for Michaelis-Menten and Hill kinetics. Examples of applications include reversible feedback cycles, the central carbon metabolism of Escherichia coli, and autocatalytic networks.