论文标题

关于量子复杂性

On Quantum Complexity

论文作者

Alishahiha, Mohsen

论文摘要

在能量本质上,给定运算符的基质元素的ETH ANSATZ导致混乱系统的热化概念。在这种情况下,要在给定模型中找到一定量的数量 - 一个人可能会在能量本质上对其矩阵元素施加特定条件,以便相应的数量在后期显示线性生长。条件与可能的极结构有关,相应的矩阵元素可能具有。基于对复杂性的一般期望,人们可能希望将此数量视为量子复杂性的可能候选者。但是,我们注意到,对于我们在本文中考虑的明确示例,有很多数量表现出相似的行为。

The ETH ansatz for matrix elements of a given operator in the energy eigenstate basis results in a notion of thermalization for a chaotic system. In this context for a certain quantity - to be found for a given model - one may impose a particular condition on its matrix elements in the energy eigenstate basis so that the corresponding quantity exhibit linear growth at late times. The condition is to do with a possible pole structure the corresponding matrix elements may have. Based on the general expectation of complexity one may want to think of this quantity as a possible candidate for the quantum complexity. We note, however, that for the explicit examples we have considered in this paper, there are infinitely many quantities exhibiting similar behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源