论文标题
无线电访问网络性能分析的基于规范相关的框架
A canonical correlation-based framework for performance analysis of radio access networks
论文作者
论文摘要
数据驱动的优化和基于机器学习的无线电访问网络的性能诊断不仅需要源于基本数据源的性质,而且还引起了重大的挑战,而且由于用户移动性和不同流量模式而引起的单元格之间的复杂时空关系和相互依赖性。我们讨论了如何使用多元分析来研究这些配置和绩效管理数据集以及在关键性能指标方面识别细胞之间的关系。为此,我们利用了基于规范相关分析(CCA)的新框架,这不仅是降低维数,而且是分析不同多元数据集的关系的高效方法。作为一个案例研究,我们讨论了基于商业蜂窝网络中细胞关闭的节能用例,在那里我们使用CCA分析了容量细胞关闭对同一部门覆盖电池KPI的影响。来自LTE网络的数据用于分析示例案例。我们得出的结论是,CCA是一种可行的方法,用于识别网络计划和配置数据之间的关键关系,而且是动态性能数据,为诸如降低维度降低,绩效分析和性能诊断的根本原因分析等努力铺平了道路。
Data driven optimization and machine learning based performance diagnostics of radio access networks entails significant challenges arising not only from the nature of underlying data sources but also due to complex spatio-temporal relationships and interdependencies between cells due to user mobility and varying traffic patterns. We discuss how to study these configuration and performance management data sets and identify relationships between cells in terms of key performance indicators using multivariate analysis. To this end, we leverage a novel framework based on canonical correlation analysis (CCA), which is a highly effective method for not only dimensionality reduction but also for analyzing relationships across different sets of multivariate data. As a case study, we discuss energy saving use-case based on cell shutdown in commercial cellular networks, where we apply CCA to analyze the impact of capacity cell shutdown on the KPIs of coverage cell in the same sector. Data from LTE Network is used to analyzed example case. We conclude that CCA is a viable approach for identifying key relationships not only between network planning and configuration data, but also dynamic performance data, paving the way for endeavors such as dimensionality reduction, performance analysis, and root cause analysis for performance diagnostics.