论文标题
在3D Lieb晶格家族中的非常规的离域化
Unconventional delocalization in a family of 3D Lieb lattices
论文作者
论文摘要
广义3D LIEB模型中不相关的疾病导致存在有限的迁移率边缘,破坏了平坦带的宏观退化,并破坏了其紧凑的定位状态。现在,我们引入了秩序和混乱的混合,使这种退化性仍然存在,并保留了紧凑的定位状态。我们获得能量序列相图并识别迁移率边缘。有趣的是,对于大型疾病,紧凑型状态的存活诱导了接近原始平坦带能的离域特征状态的存在 - 产生看似不同的迁移率边缘。然而,对于减少疾病的降低,可以发现从扩展到局部行为的变化 - 导致``Anderson''行为''行为。我们表明,转移矩阵方法,计算定位长度,以及稀疏的matrix对角色化,并使用光谱间隙的能量级别的统计数据来实现这一确定,从而确定了一致性的范围。疾病可能对设想的存储应用有用。
Uncorrelated disorder in generalized 3D Lieb models gives rise to the existence of bounded mobility edges, destroys the macroscopic degeneracy of the flat bands and breaks their compactly-localized states. We now introduce a mix of order and disorder such that this degeneracy remains and the compactly-localized states are preserved. We obtain the energy-disorder phase diagrams and identify mobility edges. Intriguingly, for large disorder the survival of the compactly-localized states induces the existence of delocalized eigenstates close to the original flat band energies -- yielding seemingly divergent mobility edges. For small disorder, however, a change from extended to localized behavior can be found upon decreasing disorder -- leading to an unconventional ``inverse Anderson" behavior. We show that transfer matrix methods, computing the localization lengths, as well as sparse-matrix diagonalization, using spectral gap-ratio energy-level statistics, are in excellent quantitative agreement. The preservation of the compactly-localized states even in the presence of this disorder might be useful for envisaged storage applications.