论文标题
基于软标签数据集蒸馏医疗数据共享的压缩胃图像生成
Compressed Gastric Image Generation Based on Soft-Label Dataset Distillation for Medical Data Sharing
论文作者
论文摘要
背景和目标:需要共享医疗数据以实现医疗保健信息的跨机构流量并构建高准确的计算机辅助诊断系统。但是,大量的医疗数据集,保存深度卷积神经网络(DCNN)模型的大量记忆以及患者的隐私保护是可能导致医疗数据共享效率低下的问题。因此,本研究提出了一种新型的软标签数据集蒸馏方法,用于医疗数据共享。 方法:所提出的方法提炼了医疗图像数据的有效信息,并生成了一些带有不同数据分布的压缩图像,以供匿名医疗数据共享。此外,我们的方法可以提取DCNN模型的基本权重,以减少保存训练有素的模型以进行有效的医疗数据共享所需的内存。 结果:所提出的方法可以将数万张图像压缩为几个软标签图像,并将受过训练的模型的大小减少到其原始大小的几百分之一。蒸馏后获得的压缩图像已在视觉上匿名化;因此,它们不包含患者的私人信息。此外,我们可以通过少量压缩图像实现高检测性能。 结论:实验结果表明,所提出的方法可以提高医疗数据共享的效率和安全性。
Background and objective: Sharing of medical data is required to enable the cross-agency flow of healthcare information and construct high-accuracy computer-aided diagnosis systems. However, the large sizes of medical datasets, the massive amount of memory of saved deep convolutional neural network (DCNN) models, and patients' privacy protection are problems that can lead to inefficient medical data sharing. Therefore, this study proposes a novel soft-label dataset distillation method for medical data sharing. Methods: The proposed method distills valid information of medical image data and generates several compressed images with different data distributions for anonymous medical data sharing. Furthermore, our method can extract essential weights of DCNN models to reduce the memory required to save trained models for efficient medical data sharing. Results: The proposed method can compress tens of thousands of images into several soft-label images and reduce the size of a trained model to a few hundredths of its original size. The compressed images obtained after distillation have been visually anonymized; therefore, they do not contain the private information of the patients. Furthermore, we can realize high-detection performance with a small number of compressed images. Conclusions: The experimental results show that the proposed method can improve the efficiency and security of medical data sharing.