论文标题

$ q = \ pm 2e $ $ $电荷在A(2+1)-d $ u(1)$ lattice Gauge理论的转换时造成的弱普遍性

Weak universality induced by $Q=\pm 2e$ charges at the deconfinement transition of a (2+1)-d $U(1)$ lattice gauge theory

论文作者

Sau, Indrajit, Sen, Arnab, Banerjee, Debasish

论文摘要

无物质的晶格量表理论(LGT)提供了理想的设置,以了解有限温度下对解料过渡的限制,这通常是由于与仪表组相关的中心对称性的自发分解(在大温度下)。接近过渡,相关的自由度(Polyakov循环)在这些中心对称性下变化,有效理论仅取决于Polyakov环及其波动。如Svetitsky和Yaffe首先所示,随后对数字进行了验证,对于$ U(1)$ LGT $(2+1)$ - d,过渡在2-D XY通用类中,而对于$ Z_2 $ LGT,它在2-D Ising Gressital类中。我们通过添加更高的电荷字段来扩展这种经典方案,并表明普遍性的概念已被广义化,因此随着耦合的变化,关键指数$γ,ν$可以连续变化,而它们的比率固定到2-D ISING值。尽管如此弱的普遍性是自旋模型众所周知的,但我们首次为LGT证明了这一点。使用有效的群集算法,我们表明$ u(1)$ u(1)$量子链接LGT在旋转$ s = \ frac {1} {2} $表示中的有限温度相变位于2-D xy forcental class中。添加$ q = \ pm 2e $电荷的热量分配,我们证明了弱普遍性的发生。

Matter-free lattice gauge theories (LGTs) provide an ideal setting to understand confinement to deconfinement transitions at finite temperatures, which is typically due to the spontaneous breakdown (at large temperatures) of the centre symmetry associated with the gauge group. Close to the transition, the relevant degrees of freedom (Polyakov loop) transform under these centre symmetries, and the effective theory only depends on the Polyakov loop and its fluctuations. As shown first by Svetitsky and Yaffe, and subsequently verified numerically, for the $U(1)$ LGT in $(2+1)$-d the transition is in the 2-d XY universality class, while for the $Z_2$ LGT, it is in the 2-d Ising universality class. We extend this classic scenario by adding higher charged matter fields, and show that the notion of universality is generalized such that the critical exponents $γ, ν$ can change continuously as a coupling is varied, while their ratio is fixed to the 2-d Ising value. While such weak universality is well-known for spin models, we demonstrate this for LGTs for the first time. Using an efficient cluster algorithm, we show that the finite temperature phase transition of the $U(1)$ quantum link LGT in the spin $S=\frac{1}{2}$ representation is in the 2-d XY universality class, as expected. On the addition of $Q = \pm 2e$ charges distributed thermally, we demonstrate the occurrence of weak universality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源