论文标题
面部图像的语义引导的对象去除对象:具有广泛的适用性和强大的样式保存
Semantics-Guided Object Removal for Facial Images: with Broad Applicability and Robust Style Preservation
论文作者
论文摘要
面部图像中的对象删除和图像介绍是一项任务,其中遮挡面部图像的对象被专门针对,删除和替换为正确重建的面部图像。利用U-NET和调制发电机的两种不同的方法已被广泛认可了该任务的独特优势,但尽管每种方法的先天缺点。 U-NET是一种有条件的gan的常规方法,保留了未掩盖区域的细节,但是重建图像的样式与原始图像的其余部分不一致,并且只有当遮挡对象的大小足够小时才能坚固。相比之下,调制生成方法可以处理图像中较大的遮挡区域,并提供{a}更一致的样式,但通常会错过大多数详细功能。这两种模型之间的这种权衡需要一个模型的发明,该模型可以应用于任何尺寸的面具,同时保持一致的样式并保留面部特征的细节细节。在这里,我们提出了语义引导的介绍网络(SGIN)本身是对调制发电机的修改,旨在利用其先进的生成能力并保留原始图像的高保真详细信息。通过使用语义图的指导,我们的模型能够操纵面部特征,这些特征将方向赋予了一对多问题,以实现进一步的实用性。
Object removal and image inpainting in facial images is a task in which objects that occlude a facial image are specifically targeted, removed, and replaced by a properly reconstructed facial image. Two different approaches utilizing U-net and modulated generator respectively have been widely endorsed for this task for their unique advantages but notwithstanding each method's innate disadvantages. U-net, a conventional approach for conditional GANs, retains fine details of unmasked regions but the style of the reconstructed image is inconsistent with the rest of the original image and only works robustly when the size of the occluding object is small enough. In contrast, the modulated generative approach can deal with a larger occluded area in an image and provides {a} more consistent style, yet it usually misses out on most of the detailed features. This trade-off between these two models necessitates an invention of a model that can be applied to any size of mask while maintaining a consistent style and preserving minute details of facial features. Here, we propose Semantics-Guided Inpainting Network (SGIN) which itself is a modification of the modulated generator, aiming to take advantage of its advanced generative capability and preserve the high-fidelity details of the original image. By using the guidance of a semantic map, our model is capable of manipulating facial features which grants direction to the one-to-many problem for further practicability.