论文标题
有限的动态运动原始素可安全学习运动技能
Constrained Dynamic Movement Primitives for Safe Learning of Motor Skills
论文作者
论文摘要
动态运动原语被广泛用于学习技能,可以由熟练的人或控制者向机器人证明。尽管它们的概括功能和简单的配方使它们非常吸引人使用,但他们没有强大的保证来满足任务的操作安全限制。在本文中,我们介绍了受约束的动态运动原语(CDMP),这可以在机器人工作空间中获得限制满意度。我们提出了非线性优化的公式,以驱散DMP,强迫通过本地加权回归缩回重量以接纳零屏障函数(ZBF),该功能证明工作区约束满意度。我们在最终效应器运动的不同限制下演示了所提出的CDMP,例如避免障碍物和物理机器人的工作空间约束。可以在https://youtu.be/hjegjjkjfys中找到一个显示使用不同环境中使用不同操纵器的算法实现的视频。
Dynamic movement primitives are widely used for learning skills which can be demonstrated to a robot by a skilled human or controller. While their generalization capabilities and simple formulation make them very appealing to use, they possess no strong guarantees to satisfy operational safety constraints for a task. In this paper, we present constrained dynamic movement primitives (CDMP) which can allow for constraint satisfaction in the robot workspace. We present a formulation of a non-linear optimization to perturb the DMP forcing weights regressed by locally-weighted regression to admit a Zeroing Barrier Function (ZBF), which certifies workspace constraint satisfaction. We demonstrate the proposed CDMP under different constraints on the end-effector movement such as obstacle avoidance and workspace constraints on a physical robot. A video showing the implementation of the proposed algorithm using different manipulators in different environments could be found here https://youtu.be/hJegJJkJfys.