论文标题
基于激光雷达的3D对象检测的分布式检测
Out-of-Distribution Detection for LiDAR-based 3D Object Detection
论文作者
论文摘要
3D对象检测是自动驾驶的重要组成部分,深层神经网络(DNNS)已在此任务中实现了最先进的性能。但是,深层模型臭名昭著,因为将高置信度得分分配给分布(OOD)输入,即未从训练分布中得出的输入。检测OOD输入对于模型的安全部署至关重要。已经针对分类任务进行了广泛的研究,但对对象检测任务,特别是基于激光雷达的3D对象检测,它没有得到足够的关注。在本文中,我们专注于基于激光雷达的3D对象检测的OOD输入的检测。我们制定了OOD输入对于对象检测的含义,并提议调整几种OOD检测方法进行对象检测。我们通过提出的特征提取方法来实现这一目标。为了评估OOD检测方法,我们开发了一种简单但有效的技术,用于为给定的对象检测模型生成OOD对象。我们基于KITTI数据集的评估表明,不同的OOD检测方法具有检测特定OOD对象的偏见。它强调了联合OOD检测方法的重要性以及在这个方向上进行更多研究的重要性。
3D object detection is an essential part of automated driving, and deep neural networks (DNNs) have achieved state-of-the-art performance for this task. However, deep models are notorious for assigning high confidence scores to out-of-distribution (OOD) inputs, that is, inputs that are not drawn from the training distribution. Detecting OOD inputs is challenging and essential for the safe deployment of models. OOD detection has been studied extensively for the classification task, but it has not received enough attention for the object detection task, specifically LiDAR-based 3D object detection. In this paper, we focus on the detection of OOD inputs for LiDAR-based 3D object detection. We formulate what OOD inputs mean for object detection and propose to adapt several OOD detection methods for object detection. We accomplish this by our proposed feature extraction method. To evaluate OOD detection methods, we develop a simple but effective technique of generating OOD objects for a given object detection model. Our evaluation based on the KITTI dataset shows that different OOD detection methods have biases toward detecting specific OOD objects. It emphasizes the importance of combined OOD detection methods and more research in this direction.