论文标题
Martingale Transports and Monge地图
Martingale Transports and Monge Maps
论文作者
论文摘要
众所周知,Monge Maps从未给出边缘$ \neqν$之间的Martingale运输计划 - 了解地图超过了第一个边际$μ$,或者是及时的。在这里,我们通过令人惊讶的结果来改变观点。我们表明,任何分布$μ,ν$在凸订单中,$ν$ ATOMESLESS承认Monge Map在第二个边际$ν$上给出的Martingale耦合。也就是说,我们构建了一个称为条形码传输的特定耦合。更普遍地,我们证明,在所有Martingale耦合的集合中,这种``向后蒙格''的Martingale运输是密集的,这与Kantorovich最佳运输配方中的Monge Transpers的经典密度相似。提出了各种属性和应用程序,包括Strassen定理的精制版本和模仿定理,其中给定的Martingale的边际由``向后确定性''martingale复制,这是一种出色的过程,其当前状态编码整个历史。
It is well known that martingale transport plans between marginals $μ\neqν$ are never given by Monge maps -- with the understanding that the map is over the first marginal $μ$, or forward in time. Here, we change the perspective, with surprising results. We show that any distributions $μ,ν$ in convex order with $ν$ atomless admit a martingale coupling given by a Monge map over the second marginal $ν$. Namely, we construct a particular coupling called the barcode transport. Much more generally, we prove that such ``backward Monge'' martingale transports are dense in the set of all martingale couplings, paralleling the classical denseness result for Monge transports in the Kantorovich formulation of optimal transport. Various properties and applications are presented, including a refined version of Strassen's theorem and a mimicking theorem where the marginals of a given martingale are reproduced by a ``backward deterministic'' martingale, a remarkable type of process whose current state encodes its whole history.