论文标题

使用语义对象在不断变化的环境中使用语义对象进行观察不变的本地化

View-Invariant Localization using Semantic Objects in Changing Environments

论文作者

Ankenbauer, Jacqueline, Fathian, Kaveh, How, Jonathan P.

论文摘要

本文提出了一个新颖的框架,用于在参考图中对车辆的实时定位和自我跟踪。核心想法是映射车辆观察到的语义对象,并将其注册到参考图中的相应对象。尽管最近的几项工作利用语义信息进行了跨视图本地化,但这项工作的主要贡献是一种视图不变的公式,该方法使该方法直接适用于可检测到对象的任何观点配置。另一个独特的特征是,由于适用于极端异常相关性制度的数据关联方案,环境/对象变化的鲁棒性(例如,关联离群值为90%)。为了展示我们的框架,我们考虑了仅使用汽车作为对象将地面车辆定位在参考对象图中的示例。虽然仅使用立体声摄像机用于接地车辆,但我们考虑使用立体相机和激光扫描从地面观点构建了先验地图,并在不同日期捕获的地理参与的空中图像,以证明该框架对不同方式,观点和环境变化的稳健性。对Kitti数据集的评估表明,在3.7 km的轨迹上,本地化发生在36秒内,然后进行实时eGomotion跟踪,在激光雷达参考图中平均位置误差为8.5 m,在空中对象图上,在空中对象图中,有77%的对象是对象是外部的,在71 sec中,平均位置误差为71 sec。

This paper proposes a novel framework for real-time localization and egomotion tracking of a vehicle in a reference map. The core idea is to map the semantic objects observed by the vehicle and register them to their corresponding objects in the reference map. While several recent works have leveraged semantic information for cross-view localization, the main contribution of this work is a view-invariant formulation that makes the approach directly applicable to any viewpoint configuration for which objects are detectable. Another distinctive feature is robustness to changes in the environment/objects due to a data association scheme suited for extreme outlier regimes (e.g., 90% association outliers). To demonstrate our framework, we consider an example of localizing a ground vehicle in a reference object map using only cars as objects. While only a stereo camera is used for the ground vehicle, we consider reference maps constructed a priori from ground viewpoints using stereo cameras and Lidar scans, and georeferenced aerial images captured at a different date to demonstrate the framework's robustness to different modalities, viewpoints, and environment changes. Evaluations on the KITTI dataset show that over a 3.7 km trajectory, localization occurs in 36 sec and is followed by real-time egomotion tracking with an average position error of 8.5 m in a Lidar reference map, and on an aerial object map where 77% of objects are outliers, localization is achieved in 71 sec with an average position error of 7.9 m.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源