论文标题
有限时间动力学过渡和非平衡松弛的全球速度限制
Global Speed Limit for Finite-Time Dynamical Phase Transition and Nonequilibrium Relaxation
论文作者
论文摘要
最近的作品在平均场居里 - 韦斯 - 韦斯模型的热弛豫中揭示了有趣的有限时间动力学相变。相跃迁反映了动力学的突然转换。然而,它在具有有限交互的系统中的存在尚不清楚。在这里,我们通过广泛的计算机模拟和分析结果证明了正方形和伯特晶格上最近的邻居iSing系统的动力相变。结合大型驱动技术和伯特·古登海姆理论,我们证明了任意淬火的动力学相变的存在,包括两相区域内的淬火。令人惊讶的是,对于任何给定的初始条件,我们都证明并解释了动态相变和磁化松弛的非平凡速度限制的存在,这通过微观ising模型的模拟完全证实,但在均值场设置中不存在。在均值场理论中被忽略的,在Curie-Weiss模型中被忽略的对相关性是由于沮丧的局部配置引起的动力学约束所致,这会导致全球速度限制。
Recent works unraveled an intriguing finite-time dynamical phase transition in the thermal relaxation of the mean field Curie-Weiss model. The phase transition reflects a sudden switch in the dynamics. Its existence in systems with a finite range of interaction, however, remained unclear. Here we demonstrate the dynamical phase transition for nearest-neighbor Ising systems on the square and Bethe lattices through extensive computer simulations and by analytical results. Combining large-deviation techniques and Bethe-Guggenheim theory we prove the existence of the dynamical phase transition for arbitrary quenches, including those within the two-phase region. Strikingly, for any given initial condition we prove and explain the existence of non-trivial speed limits for the dynamical phase transition and the relaxation of magnetization, which are fully corroborated by simulations of the microscopic Ising model but are absent in the mean field setting. Pair correlations, which are neglected in mean field theory and trivial in the Curie-Weiss model, account for kinetic constraints due to frustrated local configurations that give rise to a global speed limit.