论文标题
关于root- $ t \ overline {t} $ flow的经典集成性
On the Classical Integrability of Root-$T \overline{T}$ Flows
论文作者
论文摘要
root- $ t \叠加{t} $流最近被引入了任何二维翻译不变的场理论的通用且经典的边际变形。流量与(无关)$ t \ Overline {T} $流动,并且可以明确地集成到大型的动作中,从而导致非分析的Lagrangians,让人联想到四维修改的Maxwell理论(MODMAX)。是否显而易见的是,root- $ t \ overline {t} $ flow保留了集成性,就像$ t \ overline {t} $ flow的情况一样。在本文中,我们证明了通过明确构建变形的宽松连接的大量经典模型就是这种情况。我们讨论了对称和半对称空间上的主要手性模型和非线性Sigma模型,而没有或具有Wess-Zumino项。我们还为所有这些模型的root- $ t \ overline {t} $和$ t \ overline {t} $变形的两参数的理论家族构建了宽松的连接。
The Root-$T \overline{T}$ flow was recently introduced as a universal and classically marginal deformation of any two-dimensional translation-invariant field theory. The flow commutes with the (irrelevant) $T \overline{T}$ flow and it can be integrated explicitly for a large class of actions, leading to non-analytic Lagrangians reminiscent of the four-dimensional Modified-Maxwell theory (ModMax). It is not a priori obvious whether the Root-$T \overline{T}$ flow preserves integrability, like it is the case for the $T \overline{T}$ flow. In this paper we demonstrate that this is the case for a large class of classical models by explicitly constructing a deformed Lax connection. We discuss the principal chiral model and the non-linear sigma models on symmetric and semi-symmetric spaces, without or with Wess-Zumino term. We also construct Lax connections for the two-parameter families of theories deformed by both Root-$T \overline{T}$ and $T \overline{T}$ for all of these models.