论文标题

朝着自发幽默的多模式预测:一种新颖的数据集和第一个结果

Towards Multimodal Prediction of Spontaneous Humour: A Novel Dataset and First Results

论文作者

Christ, Lukas, Amiriparian, Shahin, Kathan, Alexander, Müller, Niklas, König, Andreas, Schuller, Björn W.

论文摘要

幽默是人类社会行为,情感和认知的重要因素。它的自动理解可以促进更自然的人类互动。当前的幽默检测方法仅基于分阶段数据,使其不适用于“现实世界”应用程序。我们通过介绍新颖的Passau自发足球教练幽默(Passau-SFCH)数据集来解决这种缺陷,包括大约11个小时的录音。在马丁的幽默风格问卷中提出的幽默及其尺寸(情感和方向)的存在注释了Passau-SFCH数据集。我们采用经过验证的变压器,卷积神经网络和专家设计的功能进行了一系列实验。分析了每种模式(文本,音频,视频)的表现,以进行自发幽默识别,并研究了它们的互补性。我们的发现表明,对于自动分析幽默及其情感,面部表情是最有希望的,而幽默方向可以通过基于文本的特征来建模。此外,我们尝试采用不同的多模式识别方法,包括决策级融合和多模式变压器方法。在这种情况下,我们提出了一种新型的多模式体系结构,可产生最佳的总体结果。最后,我们在https://www.github.com/lc0197/passau-sfch上公开代码。可应要求提供Passau-SFCH数据集。

Humor is a substantial element of human social behavior, affect, and cognition. Its automatic understanding can facilitate a more naturalistic human-AI interaction. Current methods of humor detection have been exclusively based on staged data, making them inadequate for "real-world" applications. We contribute to addressing this deficiency by introducing the novel Passau-Spontaneous Football Coach Humor (Passau-SFCH) dataset, comprising about 11 hours of recordings. The Passau-SFCH dataset is annotated for the presence of humor and its dimensions (sentiment and direction) as proposed in Martin's Humor Style Questionnaire. We conduct a series of experiments employing pretrained Transformers, convolutional neural networks, and expert-designed features. The performance of each modality (text, audio, video) for spontaneous humor recognition is analyzed and their complementarity is investigated. Our findings suggest that for the automatic analysis of humor and its sentiment, facial expressions are most promising, while humor direction can be best modeled via text-based features. Further, we experiment with different multimodal approaches to humor recognition, including decision-level fusion and MulT, a multimodal Transformer approach. In this context, we propose a novel multimodal architecture that yields the best overall results. Finally, we make our code publicly available at https://www.github.com/lc0197/passau-sfch. The Passau-SFCH dataset is available upon request.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源