论文标题

更少的是:重新思考几次学习和经常性神经网

Less is More: Rethinking Few-Shot Learning and Recurrent Neural Nets

论文作者

Pereg, Deborah, Villiger, Martin, Bouma, Brett, Golland, Polina

论文摘要

统计监督的学习框架假设了一个输入输出集,其联合概率分布可靠地由培训数据集表示。然后,要求学习者从培训数据集的输入输出对中输出从培训数据集中学到的预测规则。在这项工作中,我们在机器学习的背景下为渐近式枢纽属性(AEP)\ citep {Shannon:1948}提供有意义的见解,并阐明了其对几次学习的一些潜在影响。我们为信息理论AEP下的可靠学习提供了理论保证,以及相对于样本量的概括错误。然后,我们专注于高效的复发性神经网(RNN)框架,并提出了用于几次学习的降低渗透算法。我们还提出了RNN的数学直觉,作为稀疏编码求解器的近似值。我们通过图像去除和光学相干断层扫描(OCT)示例验证了所提出方法的适用性,鲁棒性和计算效率。我们的实验结果表明,改善学习模型的样本效率,概括和时间复杂性的显着潜力,因此可以利用实时的实时应用。

The statistical supervised learning framework assumes an input-output set with a joint probability distribution that is reliably represented by the training dataset. The learner is then required to output a prediction rule learned from the training dataset's input-output pairs. In this work, we provide meaningful insights into the asymptotic equipartition property (AEP) \citep{Shannon:1948} in the context of machine learning, and illuminate some of its potential ramifications for few-shot learning. We provide theoretical guarantees for reliable learning under the information-theoretic AEP, and for the generalization error with respect to the sample size. We then focus on a highly efficient recurrent neural net (RNN) framework and propose a reduced-entropy algorithm for few-shot learning. We also propose a mathematical intuition for the RNN as an approximation of a sparse coding solver. We verify the applicability, robustness, and computational efficiency of the proposed approach with image deblurring and optical coherence tomography (OCT) speckle suppression. Our experimental results demonstrate significant potential for improving learning models' sample efficiency, generalization, and time complexity, that can therefore be leveraged for practical real-time applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源