论文标题

过程引导提高了生态系统中碳转换神经网络的预测性能

Process-guidance improves predictive performance of neural networks for carbon turnover in ecosystems

论文作者

Wesselkamp, Marieke, Moser, Niklas, Kalweit, Maria, Boedecker, Joschka, Dormann, Carsten F.

论文摘要

尽管对数据驱动的模型预测进行了深入学习,但它尚未在生态学中频繁发现。鉴于许多环境研究领域中典型的样本量较低,因此生态系统建模及其功能的默认选择仍然是基于过程的模型。这些模型中编码的过程理解的过程补充了稀疏数据和神经网络,即使在嘈杂的数据中也可以检测隐藏的动态。将过程模型嵌入神经网络中,添加了信息,可以从数据中学习,改善合并模型的可解释性和预测性能,向仅数据的神经网络和仅机制的过程模型。以森林生态系统中的碳通量为例,我们将指导神经网络朝向过程模型理论的不同方法进行了比较。在四个经典预测方案下对结果的评估支持了对过程引导的神经网络的适当选择的决策。

Despite deep-learning being state-of-the-art for data-driven model predictions, it has not yet found frequent application in ecology. Given the low sample size typical in many environmental research fields, the default choice for the modelling of ecosystems and its functions remain process-based models. The process understanding coded in these models complements the sparse data and neural networks can detect hidden dynamics even in noisy data. Embedding the process model in the neural network adds information to learn from, improving interpretability and predictive performance of the combined model towards the data-only neural networks and the mechanism-only process model. At the example of carbon fluxes in forest ecosystems, we compare different approaches of guiding a neural network towards process model theory. Evaluation of the results under four classical prediction scenarios supports decision-making on the appropriate choice of a process-guided neural network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源