论文标题

Lofar两米天空调查的无线电源组件协会与基于区域的卷积神经网络

Radio source-component association for the LOFAR Two-metre Sky Survey with region-based convolutional neural networks

论文作者

Mostert, Rafaël I. J., Duncan, Kenneth J., Alegre, Lara, Röttgering, Huub J. A., Williams, Wendy L., Best, Philip N., Hardcastle, Martin J., Morganti, Raffaella

论文摘要

无线电响亮的主动银河核(RLAGNS)通常是形态上复杂的物体,可以由多个,空间分离的成分组成。天文学家通常依靠视觉检查来解决无线电组件关联。但是,将视觉检查应用于所有成千上万的完善的RLAGNS,这些Rlagns出现在低频阵列(Lofar)两米高的Sky Survey(Lots)$ 144 $ MHz中的图像中,即使有大量的人力,也是一个令人生畏的,耗时的过程。 使用机器学习方法,我们旨在自动化大型无线电组件的无线电组件关联。 我们将关联问题变成了分类问题,并培训了一个基于快速区域的卷积神经网络,以模仿First Lots数据发布中的专家注释。我们通过删除可能与我们考虑使用现有梯度增强分类器的预测的大型且明亮的无线电组件无关的未解决的无线电源来减少旋转数据增强,以减少过度拟合并简化组件关联。 对于大型($> $> 15 $ arcsec)和Bright($> 10 $ MJY)的无线电组件,在Lots First Data Release中,我们的模型提供了相同的关联,以$ 85.3 \%\%\ pm0.6 $的案件提供与天文学家手动执行协会时得出的案例相同的案例。当协会是通过公共众包努力完成的,结果与我们的模型类似。 我们的方法能够有效地进行大量无线电调查的手动无线电组件关联,并可以作为自动无线电形态分类或自动化光宿主识别的基础。这开辟了一条途径,以研究具有扩展,复杂形态的无线电来源样本的完整性和可靠性。

Radio loud active galactic nuclei (RLAGNs) are often morphologically complex objects that can consist of multiple, spatially separated, components. Astronomers often rely on visual inspection to resolve radio component association. However, applying visual inspection to all the hundreds of thousands of well-resolved RLAGNs that appear in the images from the Low Frequency Array (LOFAR) Two-metre Sky Survey (LoTSS) at $144$ MHz, is a daunting, time-consuming process, even with extensive manpower. Using a machine learning approach, we aim to automate the radio component association of large ($> 15$ arcsec) radio components. We turned the association problem into a classification problem and trained an adapted Fast region-based convolutional neural network to mimic the expert annotations from the first LoTSS data release. We implemented a rotation data augmentation to reduce overfitting and simplify the component association by removing unresolved radio sources that are likely unrelated to the large and bright radio components that we consider using predictions from an existing gradient boosting classifier. For large ($> 15$ arcsec) and bright ($> 10$ mJy) radio components in the LoTSS first data release, our model provides the same associations for $85.3\%\pm0.6$ of the cases as those derived when astronomers perform the association manually. When the association is done through public crowd-sourced efforts, a result similar to that of our model is attained. Our method is able to efficiently carry out manual radio-component association for huge radio surveys and can serve as a basis for either automated radio morphology classification or automated optical host identification. This opens up an avenue to study the completeness and reliability of samples of radio sources with extended, complex morphologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源