论文标题
粉丝 - - 诺曼伏元系统的换向,多数化和减少
Commutativity, majorization, and reduction in Fan-Theobald-von Neumann systems
论文作者
论文摘要
扇形 - 诺曼(Neumann)系统是一个三重$(v,w,λ)$,其中$ v $和$ w $是真正的内部产品空间,$λ:v \ to w $是一张符合范围的标准,满足了fan-theobald-von neumann type type neumann type不平等,并以等于等价。示例包括欧几里得约旦代数,某些双曲线多项式引起的系统以及正常的分解系统(Eaton Triples)。在上一篇论文(ARXIV:1902.06640)中,我们介绍了此类系统的一些基本属性,并描述了有关处理某些线性/距离和光谱函数组合的优化问题的结果。我们还通过Fan-Thenobald-von neumann型不平等中的平等介绍了通勤性的概念。在本文中,我们详细介绍了通勤性的概念,并介绍/研究自动化,大量和减少粉丝 - 诺曼冯·诺伊曼系统。
A Fan-Theobald-von Neumann system is a triple $(V,W,λ)$, where $V$ and $W$ are real inner product spaces and $λ:V \to W$ is a norm-preserving map satisfying a Fan-Theobald-von Neumann type inequality together with a condition for equality. Examples include Euclidean Jordan algebras, systems induced by certain hyperbolic polynomials, and normal decompositions systems (Eaton triples). In the previous paper (arXiv:1902.06640) we presented some basic properties of such systems and described results on optimization problems dealing with certain combinations of linear/distance and spectral functions. We also introduced the concept of commutativity via the equality in the Fan-Theobald-von Neumann type inequality. In the present paper, we elaborate on the concept of commutativity and introduce/study automorphisms, majorization, and reduction in Fan-Theobald-von Neumann systems.