论文标题
在线性凸边界附近挤压函数的边界行为上
On the boundary behaviour of the squeezing function near linearly convex boundary points
论文作者
论文摘要
本文的目的是双重的。第一个目的是证明,如果存在序列$ \ {φ_j\} \ subset \ subset \ mathrm {aut}(ω)$和$ a \ inω$,以至于$ \ lim_ {j \ to \ infty}φ_j(a)=(a)= A) $ \ lim_ {j \ to \ infty}σ_Ω(φ_j(a))= 1 $,其中$ξ_0$是有限类型的线性凸边界点,那么$ξ_0$必须强烈pseudoconvex。然后,第二个目的是研究一般椭圆形挤压函数的边界行为。
The purpose of this article is twofold. The first aim is to prove that if there exist a sequence $\{φ_j\}\subset \mathrm{Aut}(Ω)$ and $a\in Ω$ such that $\lim_{j\to\infty}φ_j(a)=ξ_0$ and $\lim_{j\to\infty}σ_Ω(φ_j(a))=1$, where $ξ_0$ is a linearly convex boundary point of finite type, then $ξ_0$ must be strongly pseudoconvex. Then, the second aim is to investigate the boundary behaviour of the squeezing function of a general ellipsoid.