论文标题
使用特征生成用于体积医学图像的数据增强
Data Augmentation using Feature Generation for Volumetric Medical Images
论文作者
论文摘要
医疗图像分类是图像识别领域中最关键的问题之一。该领域的主要挑战之一是缺乏标记的培训数据。此外,数据集通常会出现类不平衡,因为某些情况很少发生。结果,分类任务的准确性通常很低。特别是深度学习模型,在图像细分和分类问题上显示出令人鼓舞的结果,但它们需要很大的数据集进行培训。因此,有必要从同一分布中生成更多的合成样品。先前的工作表明,特征生成更有效,并且比相应的图像生成更高。我们将此想法应用于医学成像领域。我们使用转移学习来训练针对金标准班级注释的小数据集的细分模型。我们提取了学习的功能,并使用它们使用辅助分类器GAN(ACGAN)来生成在类标签上的合成特征。我们根据其严重程度测试了下游分类任务中生成特征的质量。实验结果表明,这些生成特征的有效性及其对平衡数据平衡和提高分类阶级准确性的总体贡献的结果有希望的结果。
Medical image classification is one of the most critical problems in the image recognition area. One of the major challenges in this field is the scarcity of labelled training data. Additionally, there is often class imbalance in datasets as some cases are very rare to happen. As a result, accuracy in classification task is normally low. Deep Learning models, in particular, show promising results on image segmentation and classification problems, but they require very large datasets for training. Therefore, there is a need to generate more of synthetic samples from the same distribution. Previous work has shown that feature generation is more efficient and leads to better performance than corresponding image generation. We apply this idea in the Medical Imaging domain. We use transfer learning to train a segmentation model for the small dataset for which gold-standard class annotations are available. We extracted the learnt features and use them to generate synthetic features conditioned on class labels, using Auxiliary Classifier GAN (ACGAN). We test the quality of the generated features in a downstream classification task for brain tumors according to their severity level. Experimental results show a promising result regarding the validity of these generated features and their overall contribution to balancing the data and improving the classification class-wise accuracy.