论文标题

第一和二阶线性运算符的Lebesgue-Lusin属性

A Lebesgue-Lusin property for linear operators of first and second order

论文作者

Arroyo-Rabasa, Adolfo

论文摘要

我们证明,对于均质的线性部分差分运算符$ \ MATHCAL $ k \ le 2 $和可集成的映射$ f $,在该操作员的基本范围内,存在一个特殊有限变化的函数$ u $ \ [ \ Mathcal a u(x)= f(x)\ qquad \ text {几乎无处不在}。 \]这扩展了G. alberti的结果,以$ \ mathbf r^n $上的梯度。特别是,对于$ 0 \ le m <n $,这表明每个可集成的$ m $ - 向量字段是普通$(m+1)$ - 当前边界的绝对连续部分。

We prove that for a homogeneous linear partial differential operator $\mathcal A$ of order $k \le 2$ and an integrable map $f$ taking values in the essential range of that operator, there exists a function $u$ of special bounded variation satisfying \[ \mathcal A u(x)= f(x) \qquad \text{almost everywhere}. \] This extends a result of G. Alberti for gradients on $\mathbf R^N$. In particular, for $0 \le m < N$, it is shown that every integrable $m$-vector field is the absolutely continuous part of the boundary of a normal $(m+1)$-current.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源