论文标题
使用BERT场景表示的人体机器人抓握
Human-in-the-loop Robotic Grasping using BERT Scene Representation
论文作者
论文摘要
当前的NLP技术已在不同的域中极大地应用。在本文中,我们提出了一个在杂乱无章的场景中机器人抓握的人类框架,调查了语言界面的握把过程,这使用户可以通过自然语言命令进行干预。该框架是在最先进的ras基线基线上构建的,在那里我们使用bert代替场景图表代表场景的文本表示。对模拟和物理机器人的实验表明,所提出的方法在文献中胜过基于对象刺激性和场景图的传统方法。此外,我们发现,通过人类干预,绩效可以大大提高。
Current NLP techniques have been greatly applied in different domains. In this paper, we propose a human-in-the-loop framework for robotic grasping in cluttered scenes, investigating a language interface to the grasping process, which allows the user to intervene by natural language commands. This framework is constructed on a state-of-the-art rasping baseline, where we substitute a scene-graph representation with a text representation of the scene using BERT. Experiments on both simulation and physical robot show that the proposed method outperforms conventional object-agnostic and scene-graph based methods in the literature. In addition, we find that with human intervention, performance can be significantly improved.