论文标题

部分可观测时空混沌系统的无模型预测

Imaging the field inside nanophotonic devices

论文作者

Fishman, Tal, Haeusler, Urs, Dahan, Raphael, Yannai, Michael, Adiv, Yuval, Abudi, Tom Lenkiewicz, Shiloh, Roy, Eyal, Ori, Yousefi, Peyman, Eisenstein, Gadi, Hommelhoff, Peter, Kaminer, Ido

论文摘要

在次波长量表上控制光场是任何纳米仪装置的核心。特别令人感兴趣的是纳米光颗粒加速器,它们承诺将基于射频射频的加速器的紧凑型替代品。这种紧凑的设备中有效的电子加速度严重取决于通过设备内部精确设计的光学近场来实现对电子轨迹的控制。但是,由于设备的复杂性及其几何约束,这些近场是无法访问的,因此妨碍了设计和优化未来的纳米光颗粒加速器的努力。在这里,我们介绍了纳米光加速器内场分布的第一个测量。我们基于光子诱导的近场电子显微镜(Pinem)开发了一种新型的显微镜方法,以实现纳米光加速器内近场的频率可调深波长成像。我们比较了纳米光加速器的两个领先设计,也称为介电激光加速器(DLAS):具有分布式bragg反射器和反向设计的谐振结构的双柱结构。我们的实验与完整的3D模拟相辅相成,揭示了与预期设计的令人惊讶的偏差,显示了与设备中复杂的3D特征及其制造公差相关的复杂场分布。我们进一步设想了一种层析成像方法,用于成像3D场分布,这是未来高精度开发的关键,因此,高效DLA设备以及其他纳米型设备。

Controlling optical fields on the subwavelength scale is at the core of any nanophotonic device. Of particular interest are nanophotonic particle accelerators that promise a compact alternative to conventional radiofrequency-based accelerators. Efficient electron acceleration in such compact devices critically depends on achieving nanometer control of electron trajectories by precisely designed optical nearfields inside the device. However, these nearfields have so far been inaccessible due to the complexity of the devices and their geometrical constraints, hampering efforts to design and optimize future nanophotonic particle accelerators. Here we present the first measurement of the field distribution inside a nanophotonic accelerator. We develop a novel microscopy approach based on photon-induced nearfield electron microscopy (PINEM) to achieve frequency-tunable deep-subwavelength imaging of the nearfield inside nanophotonic accelerators. We compare the two leading designs of nanophotonic accelerators, also known as dielectric laser accelerators (DLAs): a dual-pillar structure with distributed Bragg reflector and an inverse-designed resonant structure. Our experiments are complemented by full 3D simulations, unveiling surprising deviations from the expected designs, showing complex field distributions related to intricate 3D features in the device and its fabrication tolerances. We further envision a tomography method to image the 3D field distribution, key for the future development of high-precision and hence high-efficiency DLA devices as well as other nanophotonic devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源