论文标题
部分可观测时空混沌系统的无模型预测
DTact: A Vision-Based Tactile Sensor that Measures High-Resolution 3D Geometry Directly from Darkness
论文作者
论文摘要
可以测量接触物体的3D几何形状的基于视觉的触觉传感器对于机器人执行灵巧的操纵任务至关重要。但是,现有的传感器通常很复杂,可以制造和细腻以扩展。在这项工作中,我们从小地利用了半透明弹性体的反射特性来设计一种名为DTACT的强大,低成本且易于制作的触觉传感器。 Dtact从捕获的触觉图像中所示的黑暗中精确测量了高分辨率3D几何形状,仅具有单个图像进行校准。与以前的传感器相反,在各种照明条件下,DTACT具有鲁棒性。然后,我们构建了具有非平面接触表面的DTACT原型,并以最少的额外努力和成本。最后,我们执行了两项智能机器人任务,包括使用DTACT进行姿势估计和对象识别,其中DTACT在应用中显示出巨大的潜力。
Vision-based tactile sensors that can measure 3D geometry of the contacting objects are crucial for robots to perform dexterous manipulation tasks. However, the existing sensors are usually complicated to fabricate and delicate to extend. In this work, we novelly take advantage of the reflection property of semitransparent elastomer to design a robust, low-cost, and easy-to-fabricate tactile sensor named DTact. DTact measures high-resolution 3D geometry accurately from the darkness shown in the captured tactile images with only a single image for calibration. In contrast to previous sensors, DTact is robust under various illumination conditions. Then, we build prototypes of DTact that have non-planar contact surfaces with minimal extra efforts and costs. Finally, we perform two intelligent robotic tasks including pose estimation and object recognition using DTact, in which DTact shows large potential in applications.