论文标题
识别微分方程以使用非线性系统的稀疏鉴定来预测血糖
Identifying Differential Equations to predict Blood Glucose using Sparse Identification of Nonlinear Systems
论文作者
论文摘要
使用机器学习来描述动态医疗系统是一个充满挑战的主题,具有广泛的应用程序。在这项工作中,描述了纯粹基于测量数据的糖尿病患者的血糖水平进行建模的可能性。影响变量胰岛素和卡路里的组合用于找到可解释的模型。人体外部物质的吸收速度在很大程度上取决于外部影响,这就是为什么添加时间班的原因。重点放在确定最佳时移,以提供良好的预测准确性,与其他未知的外部影响无关。该建模纯粹基于使用非线性动力学的稀疏鉴定的测量数据。确定一个微分方程,从初始值开始,模拟了血糖动力学。通过将最佳模型应用于测试数据,我们可以证明可以使用微分方程来模拟长期的血糖动力学,很少会影响变量。
Describing dynamic medical systems using machine learning is a challenging topic with a wide range of applications. In this work, the possibility of modeling the blood glucose level of diabetic patients purely on the basis of measured data is described. A combination of the influencing variables insulin and calories are used to find an interpretable model. The absorption speed of external substances in the human body depends strongly on external influences, which is why time-shifts are added for the influencing variables. The focus is put on identifying the best timeshifts that provide robust models with good prediction accuracy that are independent of other unknown external influences. The modeling is based purely on the measured data using Sparse Identification of Nonlinear Dynamics. A differential equation is determined which, starting from an initial value, simulates blood glucose dynamics. By applying the best model to test data, we can show that it is possible to simulate the long-term blood glucose dynamics using differential equations and few, influencing variables.