论文标题

监督班级NMF用于数据表示和分类

Supervised Class-pairwise NMF for Data Representation and Classification

论文作者

Hedjam, Rachid, Abdesselam, Abdelhamid, Jalali, Seyed Mohammad Jafar, Khan, Imran, Belhaouari, Samir Brahim

论文摘要

基于各种非负矩阵分解(NMF)方法为成本函数添加了新术语,以使模型适应特定任务,例如聚类或保留缩小空间中的某些结构属性(例如,局部不变性)。附加的术语主要由高参数加权,以控制整个公式的平衡,以指导优化过程实现目标。结果是一种参数化的NMF方法。但是,NMF方法采用了无监督的方法来估计分解矩阵。因此,不能保证使用新的特征执行预测(例如分类)的能力。这项工作的目的是设计一个进化框架,以学习参数化NMF的超参数,并以监督的方式估算分解矩阵,以更适合分类问题。此外,我们声称,将基于NMF的算法分别应用于不同的类对,而不是将其应用于整个数据集,从而提高了矩阵分解过程的有效性。这导致训练具有不同平衡参数值的多个参数化的NMF算法。采用了交叉验证组合学习框架,并使用遗传算法来识别最佳的高参数值集。我们对真实和合成数据集进行的实验证明了所提出的方法的有效性。

Various Non-negative Matrix factorization (NMF) based methods add new terms to the cost function to adapt the model to specific tasks, such as clustering, or to preserve some structural properties in the reduced space (e.g., local invariance). The added term is mainly weighted by a hyper-parameter to control the balance of the overall formula to guide the optimization process towards the objective. The result is a parameterized NMF method. However, NMF method adopts unsupervised approaches to estimate the factorizing matrices. Thus, the ability to perform prediction (e.g. classification) using the new obtained features is not guaranteed. The objective of this work is to design an evolutionary framework to learn the hyper-parameter of the parameterized NMF and estimate the factorizing matrices in a supervised way to be more suitable for classification problems. Moreover, we claim that applying NMF-based algorithms separately to different class-pairs instead of applying it once to the whole dataset improves the effectiveness of the matrix factorization process. This results in training multiple parameterized NMF algorithms with different balancing parameter values. A cross-validation combination learning framework is adopted and a Genetic Algorithm is used to identify the optimal set of hyper-parameter values. The experiments we conducted on both real and synthetic datasets demonstrated the effectiveness of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源