论文标题

用模态网络的压缩网络群体揭示了结构多样性

Compressing network populations with modal networks reveals structural diversity

论文作者

Kirkley, Alec, Rojas, Alexis, Rosvall, Martin, Young, Jean-Gabriel

论文摘要

分析由多个样本或层组成的关系数据涉及关键挑战:需要多少网络来捕获数据中的各种结构?这些代表性网络的结构是什么?我们描述了从最小描述长度原理得出的有效的非参数方法,以自动构建网络表示。该方法输入在固定节点上测量的网络群体或多层网络群体,并输出一小部分代表网络,并将每个网络样本或层分配给一个代表性网络之一。我们通过有效的蒙特卡洛方案确定代表性网络并将网络样本分配给它们,该方案可最大程度地减少我们的描述长度目标。对于时间有序的网络,我们使用多项式时间动态编程方法,该方法限制了网络层的簇在时间上连续。这些方法恢复了合成网络人群中种植的异质性,并确定了全球贸易和化石记录网络中的基本结构异质性。我们的方法是原则性的,可扩展的,不含参数的,并且可以容纳广泛的数据,为探索性分析和预处理大量网络样本提供了统一的镜头。

Analyzing relational data consisting of multiple samples or layers involves critical challenges: How many networks are required to capture the variety of structures in the data? And what are the structures of these representative networks? We describe efficient nonparametric methods derived from the minimum description length principle to construct the network representations automatically. The methods input a population of networks or a multilayer network measured on a fixed set of nodes and output a small set of representative networks together with an assignment of each network sample or layer to one of the representative networks. We identify the representative networks and assign network samples to them with an efficient Monte Carlo scheme that minimizes our description length objective. For temporally ordered networks, we use a polynomial time dynamic programming approach that restricts the clusters of network layers to be temporally contiguous. These methods recover planted heterogeneity in synthetic network populations and identify essential structural heterogeneities in global trade and fossil record networks. Our methods are principled, scalable, parameter-free, and accommodate a wide range of data, providing a unified lens for exploratory analyses and preprocessing large sets of network samples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源