论文标题

DALL-E 2对放射学有什么了解?

What Does DALL-E 2 Know About Radiology?

论文作者

Adams, Lisa C., Busch, Felix, Truhn, Daniel, Makowski, Marcus R., Aerts, Hugo JWL., Bressem, Keno K.

论文摘要

诸如DALL-E 2之类的生成模型可以代表放射学中人工智能研究的图像生成,增强和操纵的有希望的未来工具,前提是这些模型具有足够的医疗领域知识。在这里,我们表明DALL-E 2在零拍动的文本对图像生成新图像的生成零的方面,具有有希望的功能的X射线图像的相关表示形式,延续图像超出其原始边界或删除元素,而病理学生成或CT,MRI和超声图像仍然受到限制。因此,即使事先需要对这些模型进行进一步的微调和适应,也需要使用生成模型来增强和生成放射学数据似乎是可行的。

Generative models such as DALL-E 2 could represent a promising future tool for image generation, augmentation, and manipulation for artificial intelligence research in radiology provided that these models have sufficient medical domain knowledge. Here we show that DALL-E 2 has learned relevant representations of X-ray images with promising capabilities in terms of zero-shot text-to-image generation of new images, continuation of an image beyond its original boundaries, or removal of elements, while pathology generation or CT, MRI, and ultrasound images are still limited. The use of generative models for augmenting and generating radiological data thus seems feasible, even if further fine-tuning and adaptation of these models to the respective domain is required beforehand.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源